

Application of the Key Characteristics of Carcinogens to PFAS

Alexis Temkin, Ph.D Environmental Working Group Center for PFAS and Cancer (CPAC) Joint Virtual Symposium Thursday, March 7, 2024

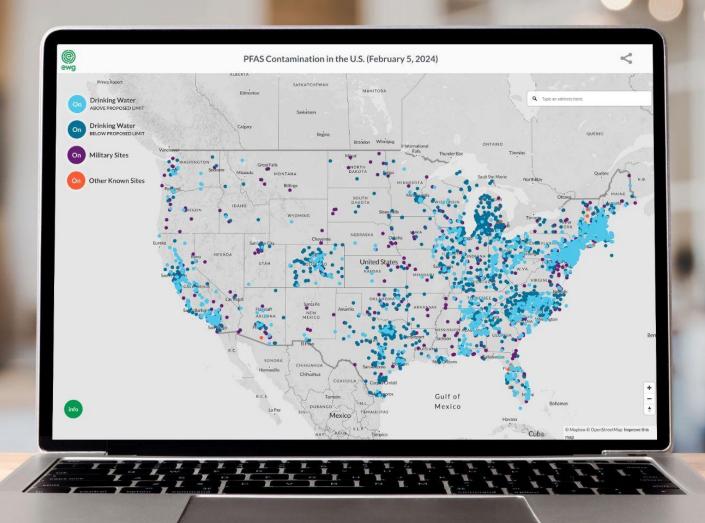
> Temkin et al. 2020. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. *International Journal of Environmental Research and Public Health.* 17, 1668

We are scientists, policy experts, advocates, and educators

EWG's mission is simple: To empower you with breakthrough research to make informed choices and live a healthy life in a healthy environment

Olga Naidenko, Ph.D VICE PRESIDENT, SCIENCE INVESTIGATIONS. **RESEARCH & DEVELOPMENT**

Tasha Stoiber, Ph.D


SENIOR SCIENTIST

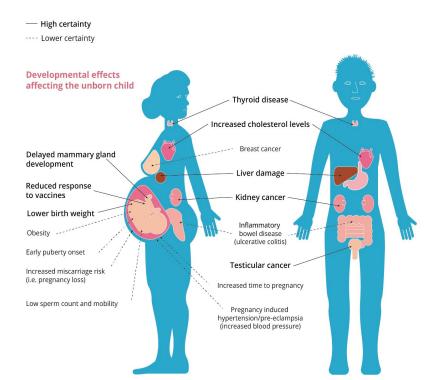
David Andrews, Ph.D SENIOR SCIENTIST. CHEMICAL RESEARCH: CHEMISTRY AND TOXICOLOGY

Alexis Temkin, Ph.D SENIOR TOXICOLOGIST

Sydney Evans, MPH SENIOR SCIENCE ANALYST, DATA SCIENCE RESEARCH

Collaborators at Indiana University: Barbara Hocevar and Lisa Kamendulis

The PFAS Problem(s)


- Widespread global contamination from broad range of uses, industrial dischargers and transport
- Highly persistent and mobile chemicals
- Growing number of health concerns associated with PFAS exposure
- Huge chemical class

Health Effects of PFAS Exposure

O

PFUA#

Health harms associated with long-chain and short-chain PFAS commonly detected in drinking water and used in consumer or industrial products

Chemical	Harm to the immune system	Harm to development and reproduction	Harm to the endocrine system	Metabolic changes	Changes in the liver	Increased risk of cancer	
	Weaker immune response; lower antibody production in response to vaccination; increased allergic response; increased risk of asthma; changes in spleen and thymus	Reduced birth weight; pregnancy-induced hypertension; predcafertillity; reduced fertillity; reduced duration of breastfeeding; altered mammary gland development; harm to the male reproductive system	Changes in hormone levels, including thyroid and reproductive hormones; thyroid disease; hormone receptor activation	Increased cholesterol and lipids; weight gain; diabetes	Increased liver weight; changes in liver enzymes	Increased risk of testicular, kidney or breast cancer; increased tumors in laboratory animals; evidence of one or more of the key characteristics of carcinogens	
			Long-chain PF	AS			
PFOA*#							
PFOS*#							
PFNA*#						٠	
PFHxS*#				٠		٠	
PFDA*#						٠	
PFDoA#	٠	٠	٠			٠	

Sources: US National Toxicology Program (2016); C8 Health Project Reports (2012); WHO IARC (2017); Barry et al. (2013); Fenton et al. (2009); and White et al. (2011) apud Emerging chemical risks in Europe — 'PFAS'1.

The Key Characteristics of Carcinogens

- Characteristics to organize and integrate evidence for chemical hazard identification
- Born out of analysis of know human carcinogens classified by IARC
- Focus on mechanistic data, but evidence can come from epidemiology, animal bioassays, and *in vitro*/NAMs
- Intentionally broad, and less specific that AOPs or MOA frameworks to improve risk assessment

Smith et al. (2016) Environmental Health Perspectives. 124(6): 713-721 Guyton et al. (2018) Chemical Research and Toxicology. 31(12):1290-1292 Smith et al. (2020) Cancer Epidemiology, Biomarkers & Prevention. 29(10):1887-1903

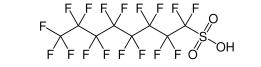
The Key Characteristics of Carcinogens

Key Characteristics	Examples of Relevant Evidence
1—Is electrophilic or can be metabolically activated	Parent compound or metabolite with an electrophilic structure (e.g., epoxide, quinone, etc.), formation of DNA and protein adducts
2—Is genotoxic	DNA damage (DNA strand breaks, DNA-protein cross-links, unscheduled DNA synthesis), intercalation, gene mutations, cytogenetic changes (e.g., chromosome aberrations, micronuclei)
3—Alters DNA repair or causes genomic instability	Alterations of DNA replication or repair (e.g., topoisomerase II, base-excision or double-strand break repair
4—Induces epigenetic alterations	DNA methylation, histone modification, microRNAs
5—Induces oxidative stress	Oxygen radicals, oxidative stress, oxidative damage to macromolecules (e.g., DNA, lipids)
6—Induces chronic inflammation	Elevated white blood cells, myeloperoxidase activity, altered cytokine and/or chemokine production
7—Is immunosuppressive	Decreased immunosurveillance, immune system dysfunction
8—Modulates receptor-mediated effects	Receptor in/activation (e.g., ER, PPAR, AhR) or modulation of endogenous ligands (including hormones)
9—Causes immortalization	Inhibition of senescence, cell transformation
10—Alters cell proliferation, cell death or nutrient supply	Increased proliferation, decreased apoptosis, changes in growth factors, energetics and signaling pathways related to cellular replication or cell-cycle control, angiogenesis

Applying the KC Framework to PFAS

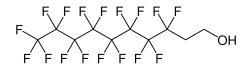
Study Objective:

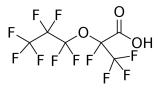
Assemble, organize and evaluate the literature on PFAS through the lens of the key characteristics of carcinogens


Methods:


- Selected 26 PFAS
- Literature search of existing reviews supplemented with peer-reviewed articles
- Epidemiology, animal bioassay and mechanistic data
- Strength of evidence assessment

The 26 PFAS we focused on from a huge chemical class


	Perfluoroalkyl carboxylic acid		Perfluoroalkane sulfonic acid/sulfonamid		Polyfluoroalkyl phosphate ester
Long Chain	PFOA, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, PFTeDA	Long Chain	PFOS, PFHxS, PFOSA*	Long Chain	8:2 monoPAP, 8:2 diPAP, 8:2 triPAP, 10:2 diPAP
Short Chain	PFHxA, PFBA, PFPeA, PFHpA	Short Chain	PFBS	Short Chain	4:2 diPAP, 6:2 diPAP



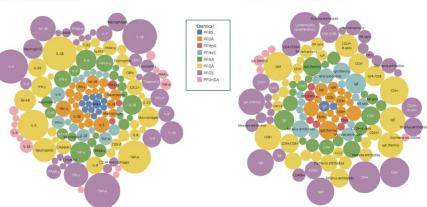
	Fluorotelomer alcohol
Long Chain	8:2 FTOH
Short Chain	4:2 FTOH, 6:2 FTOH

	Fluorinated ether carboxylate
Short Chain	GenX (HFPO-DA); PMOH, PMPP/ADONA

9

Major Findings:

- Multiple PFAS exhibit several key characteristics of carcinogens
- Many data gaps
- PFOA and PFOS exhibit up to 5 KCS
- KCs 4, 5, 7, 8 and 10 have the strongest evidence
 - 4 epigenetic alterations
 - 5 oxidative stress
 - 7 immune suppression
 - 8 receptor-mediated effects
 - 10 cell proliferation


Key Characteristics	PFOA	PFOS and Long-chain PFAS	Short-chain PFAS	Examples of Relevant Evidence
1—Is electrophilic or can be metabolically activated	PFOA	PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFOSA, 8:2 FTOH*, 8:2 diPAP*, 10:2 diPAP	PFBS, PFHxA, PFBA, PFHpA, GenX, 6:2FTOH*, 4:2 diPAP*, 6:2 diPAP	PFAS are quite stable with long half-lives
2—Is genotoxic	PFOA	PFOS, PFNA, PFDA, PFHxS	PFHxA, GenX, PFBS	PFAS are not directly mutagenic; Evidence of DNA damage in some assays likely from secondary event such as oxidative damage
3—Alters DNA repair or causes genomic instability	Data gap	Data gap	Data gap	Data gap
4—Induces epigenetic alterations	PFOA	PFOS, PFHxS, PFNA, PFUnA	Data gap	Observations of differentially methylated regions and changes in global methylation in human cohorts, and <i>in vitro</i> assays
5—Induces oxidative stress	PFOA	PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, PFTeDA, PFOSA	PFBS, PFHxA, PFPeA	Evidence primarily from <i>in vivo</i> and <i>in vitro</i> assays investigating ROS levels, lipid peroxidation, antioxidant enzymes, etc.
No associatio	on	Somewhat suggestive evidence	Suggestive evidence	Strong evidence

Key Characteristics PI		PFOA	PFOS and Long-chain PFAS	Short-chain PFAS	Examples of Relevant Evidence
6—Induces chronic inflammation		PFOA	PFOA, PFOS, PFHxS, PFDA, PFUnA, 8:2 FTOH	PFBS	Associations with disease characterized by chronic inflammation, measurements of proinflammatory cytokines <i>in vivo</i> and <i>in vitro</i>
7—Is immunosuppressive		PFOA	PFOS, PFHxS, PFNA, PFDA, PFOSA, 8:FTOH	PFBS	Reduced vaccine response in humans, decreased T cell-dependent antibody response in animals, changes in immune cell populations
8—Modulates receptor-mediated effects		PFOA	PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, PFTeDA, 8:2 FTOH, 8:2 monoPAP, 8:2 diPAP, 8:2 triPAP, 10:2 diPAP	PFBS, PFHxA, PFBA, PFPeA, PFHpA, GenX, ADONA, 4:2 FTOH, 6:2 FTOH	Evidence of binding to several nuclear receptors especially PPARa, changes in circulating hormones and hormone mediated effects in humans and animals
9—Causes immortalization		Data gap	Data gap	Data gap	Some studies on telomere length
10—Alters cell proliferation, cell death or nutrient supply		PFOA	PFOS, PFHxS, PFNA, 8:2 FTOH	PFBS, PFHxA, 6:2 FTOH	Increases in proliferation, migration and invasion in cancer cell lines, cell cycle disruption
	No association	n	Somewhat suggestive evidence	Suggestive evidence	Strong evidence

Where we are now, and next steps


b. Immunosuppression

a. Inflammation

1) support conclusions by Temkin et al. (2020) that PFAS exposure causes immunosuppression; 2) provide additional evidence that PFAS exposure may cause chronic inflammation; and 3) use biomarker-based evidence to propose potential underlying mechanisms as to how PFASs induce both chronic inflammation and immunosuppression

Zhang et al (2023): A systematic evidence map of chronic inflammation and immunosuppression related to per- and polyfluoroalkyl substance (PFAS) exposure. Environ Res. 2023 Mar 1;220:115188. doi: 10.1016/j.envres.2022.115188. Epub 2022 Dec 30. PMID: 36592815; PMCID: PMC10044447.

Data generated from high throughput screening assays provides more evidence and additionally assays for several key characteristics

Singh and Hsieh (2021): Exploring Potential Carcinogenic Activity of Per- and Polyfluorinated Alkyl Substances Utilizing High-Throughput Toxicity Screening Data. Int J Toxicol. 2021 Jul-Aug;40(4):355-366. doi: 10.1177/10915818211010490. Epub 2021 May 4. PMID: 33944624.

IARC classifications for PFOA and PFOS

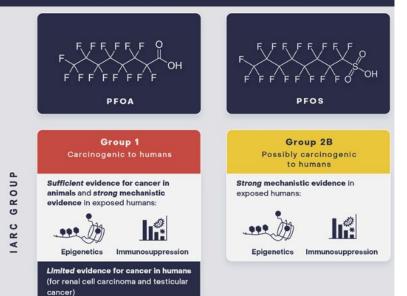

International Agency for Research on Cancer

Table 1. Summary of classifications in IARC Monographs Volume 135

Agent	Evidence stream					
	Cancer in humans	Cancer in experimental animals	Mechanistic evidence (key characteristics of carcinogens)	evaluation		
Perfluorooctanoic acid (PFOA)	<i>Limited</i> (renal cell carcinoma and testicular cancer)	Sufficient	Strong in exposed humans (KCs 4, 7), human primary cells (KCs 5, 7, 8), experimental systems (KCs 4, 5, 7, 8, 10)	Group 1		
Perfluorooctanesulfonic acid (PFOS)	Inadequate	Limited	Strong in exposed humans (KCs 4, 7), human primary cells (KCs 5, 7, 8), experimental systems (KCs 4, 5, 7, 8, 10)	Group 2B		

KCs, key characteristics of carcinogens; KC4, induces epigenetic alterations; KC5, induces oxidative stress; KC7, is immunosuppressive; KC8, modulates receptor-mediated effects; KC10, alters cell proliferation, cell death, or nutrient supply. IARC MONOGRAPHS VOL. 135 PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUOROOCTANESULFONIC ACID (PFOS) (7-14 NOVEMBER 2023)

Key Characteristic	cs	PFOA	PFOS and Long-chain PFAS	Short-chain PFAS	Examples of Relevant Evidence
1—Is electrophilic or can be metabolically activated		PFOA	PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFOSA, 8:2 FTOH*, 8:2 diPAP*, 10:2 diPAP	PFBS, PFHxA, PFBA, PFHpA, GenX, 6:2FTOH*, 4:2 diPAP*, 6:2 diPAP	PFAS are quite stable with long half-lives
2—Is genotoxic		PFOA	PFOS, PFNA, PFDA, PFHxS	PFHxA, GenX, PFBS	PFAS are not directly mutagenic; Evidence of DNA damage in some assays likely from secondary event such as oxidative damage
3—Alters DNA repair or causes genomic instability		Data gap	Data gap	Data gap	Data gap
4—Induces epigenetic alterations		PFOA	PFOS, PFHxS, PFNA, PFUnA	Data gap	Observations of differentially methylated regions and changes in global methylation in human cohorts, and <i>in vitro</i> assays
5—Induces oxidative stress		PFOA	PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, PFTeDA, PFOSA	PFBS, PFHxA, PFPeA	Evidence primarily from <i>in vivo</i> and <i>in vitro</i> assays investigating ROS levels, lipid peroxidation, antioxidant enzymes, etc.
	No association		Somewhat suggestive evidence	Suggestive evidence	Strong evidence

Key Characteristics	Ρ	PFOA	PFOS and Long-chain PFAS	Short-chain PFAS	Examples of Relevant Evidence
1—Is electrophilic or can be metabolically activated		PFOA	PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFOSA, 8:2 FTOH*, 8:2 diPAP*, 10:2 diPAP	PFBS, PFHxA, PFBA, PFHpA, GenX, 6:2FTOH*, 4:2 diPAP*, 6:2 diPAP	PFAS are quite stable with long half-lives
2—Is genotoxic		PFOA	PFOS, PFNA, PFDA, PFHxS	PFHxA, GenX, PFBS	PFAS are not directly mutagenic; Evidence of DNA damage in some assays likely from secondary event such as oxidative damage
3—Alters DNA repair or can genomic instability		Data gap	Data gap	Data gap	Data gap
4—Induces epigenetic alterations		PFOA	PFOS, PFHxS, PFNA, PFUnA	Data gap	Observations of differentially methylated regions and changes in global methylation in human cohorts, and <i>in vitro</i> assays
5—Induces oxidative stress		PFOA	PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, PFTeDA, PFOSA	PFBS, PFHxA, PFPeA	Evidence primarily from <i>in vivo</i> and <i>in vitro</i> assays investigating ROS levels, lipid peroxidation, antioxidant enzymes, etc.
No o	issociation		Somewhat suggestive evidence	Suggestive evidence	Strong evidence

Key Charac	Key Characteristics PFO		PFOS and Long-chain PFAS	Short-chain PFAS	Examples of Relevant Evidence
6—Induces chronic inflammation		PFOA	PFOA, PFOS, PFHxS, PFDA, PFUnA, 8:2 FTOH	PFBS	Associations with disease characterized by chronic inflammation, measurements of proinflammatory cytokines <i>in vivo</i> and <i>in vitro</i>
7—Is immunosuppressive		PFOA	PFOS, PFHxS, PFNA, PFDA, PFOSA, 8:FTOH	PFBS	Reduced vaccine response in humans, decreased T cell-dependent antibody response in animals, changes in immune cell populations
8—Modulates receptor-medi	8—Modulates receptor-mediated effects		PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, PFTeDA, 8:2 FTOH, 8:2 monoPAP, 8:2 diPAP, 8:2 triPAP, 10:2 diPAP	PFBS, PFHxA, PFBA, PFPeA, PFHpA, GenX, ADONA, 4:2 FTOH, 6:2 FTOH	Evidence of binding to several nuclear receptors especially PPARa, changes in circulating hormones and hormone mediated effects in humans and animals
9—Causes imn	9—Causes immortalization		Data gap	Data gap	Some studies on telomere length
10—Alters cell proliferation, cell death or nutrient supply		PFOA	PFOS, PFHxS, PFNA, 8:2 FTOH	PFBS, PFHxA, 6:2 FTOH	Increases in proliferation, migration and invasion in cancer cell lines, cell cycle disruption,
	No association	1	Somewhat suggestive evidence	Suggestive evidence	Strong evidence

Key Charac	Key Characteristics PFC		PFOS and Long-chain PFAS	Short-chain PFAS	Examples of Relevant Evidence
6—Induces chronic inflammation		PFOA	PFOA, PFOS, PFHxS, PFDA, PFUnA, 8:2 FTOH	PFBS	Associations with disease characterized by chronic inflammation, measurements of proinflammatory cytokines <i>in vivo</i> and <i>in vitro</i>
7—Is immunosuppressive		PFOA	PFOS, PFHxS, PFNA, PFDA, PFOSA, 8:FTOH	PFBS	Reduced vaccine response in humans, decreased T cell-dependent antibody response in animals, changes in immune cell populations
8—Modulates receptor-mediated effects		PFOA	PFOS, PFHxS, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, PFTeDA, 8:2 FTOH, 8:2 monoPAP, 8:2 diPAP, 8:2 triPAP, 10:2 diPAP	PFBS, PFHxA, PFBA, PFPeA, PFHpA, GenX, ADONA, 4:2 FTOH, 6:2 FTOH	Evidence of binding to several nuclear receptors especially PPARa, changes in circulating hormones and hormone mediated effects in humans and animals
9—Causes imr	9—Causes immortalization		Data gap	Data gap	Some studies on telomere length
10—Alters cell proliferation, cell death or nutrient supply		PFOA	PFOS, PFHxS, PFNA, 8:2 FTOH	PFBS, PFHxA, 6:2 FTOH	Increases in proliferation, migration and invasion in cancer cell lines, cell cycle disruption,
	No association		Somewhat suggestive evidence	Suggestive evidence	Strong evidence

PFAS Regulatory Guidelines based on Cancer Endpoints

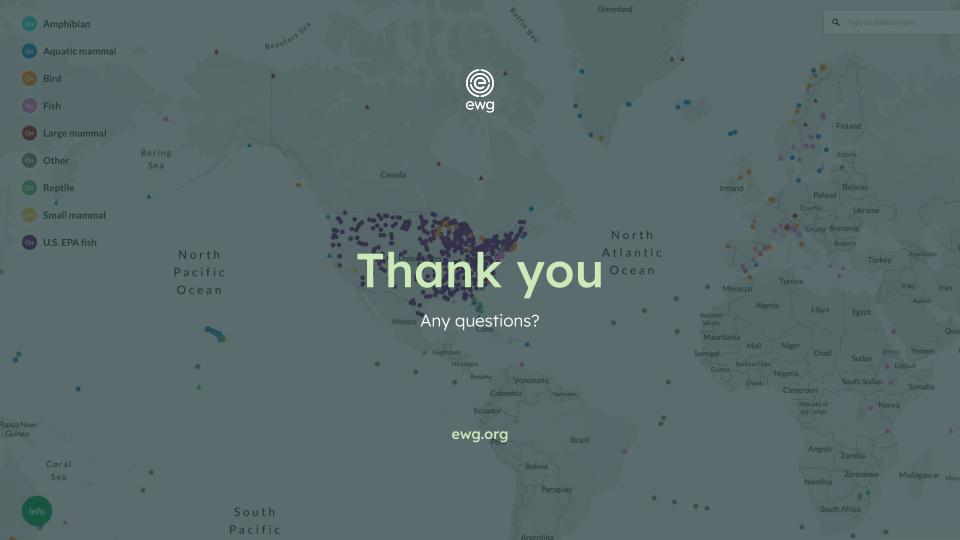
- Strictest drinking water standards and guidelines for PFAS are based on cancer endpoints
- EPA Proposed Maximum
 Contaminant Level
 - PFOA 4 ppt, zero for MCLG
 - PFOS 4 ppt, zero for MCLG
- California Public Health Goal
 - PFOA 0.007 ppt
 - PFOS 1 ppt

Addressing Data Gaps

	The numbers in the heat map indicate the number of studies, not the number of significant effects. Click to select studies, click again to deselect.														Filters																					
Colors correspond the study type: hur in green, animal in in vitro in orange.	man blue,	Metabolic & Directive System	Jesuve aystelli	Body Weight, Size & Growth		Endocrine System		Systemic/	Nonspecific/ Other	:	System		Cell Toxicity / Mortality	6	Circulatory System		Nervoire Svetem &	ayatelli		mmune System		Heinsen Creekam			Respiratory System		Musculoskeletal	System		Genotoxicity		ensory System			Cancers	Refresh page to reset all filters Study Type Click for study type specific histograms, hover for study counts human animal in vitro
	Total	20	2	8 9						1	Sy		ΰž					Be		_				-								S				
	631	11963	land a	5157 1		49							26 4	1000		12				14		11 9		23		1 8		10 mm			6 15			14	1	😔 Early Life Effects
TTTIAG		12524	and a second	5833 1	_	19	1000		100	10 m		100	15		-	1.1	39				1942		7	21		1 8			7	_	4 15			16	-	Show All Effects 🔹
11071	12220	70 <mark>100</mark>	and the second se	and the second se	1000	35		000		88		3	17 4	1.1		-				22	1000			16		1 5				4	79				2 3	\$ Financial Conflict of Interest
TT OTIDIA -		54 22	Coldina -	200000	COLUMN 1	15	0.000		- Person	60		-	8 2	COLUMN STATES			100	7			2 1	10.000		13		2	2 4	1 1 2	1		1 9	1.000		9	1	(All)
11110 11111	/	40 35			1.00	24				29		2	19 1					17		12		7 9	12	5	4	4	4 7	-	2	4	4	2			2	
TIDODA -		20 26	SOUTH CO	CARGOOD		17	-		10-10-00	32		3	8	100	4			8	1000		_	6 4	- T	7	2	1 1	1 5				2 6			6	1	Selected Studies
1100	1. C.	10 18	Constant of	A DOLLARD	1000	13				16			21					18	4 5	5		5 5		6	2	2 1	1 3	3 1			3 2	6	_	3	1	Hover to see details, click for PubMed.
TTIPT		25 14	00000		10000	9	-			32			100	20 12		_	5	3	2 8	5		3 3		4	1	1	1 1				16			6	-	Abe et al. 2017
	100.00	12 14	and and a		10	1.000	27		1 25		8 2	-	14 2	- C				9	2 2	4	0.000	5 5		4	4	1		5 1			5 1		1	2	1	
Пря		9 13	Contract of the	10000	1550	5			4 18	1. S.	4 1		13		6			4		4		5 4		1	2	1	1 3	S. 1999		1	2 1	2		1		Abe et al. 2017
TT HIDA		11 13	1000	6 18	100	13				13			3	5 3			-	5	3	3		3 3		1				1			2	1		2		Abercrombie et al. 2021 👴
1110071		200 Barriel Ba	Contraction of the	5 13	1000	7	10100		10 A 10 A 10		3 1		2 1		1	1000	and the second second	3	2	2	_	3 2	2 1	3			2	2			1	-			1	
mer eera.	0.05.5	15	12	10	15	10000		1		19				5	24 L		10	_	1		_	В		1		3	3				4			3		Adinehzadeh and Reo 1998
		1 23	201	2 15	1.20	16		1		4	- 100 K	1	9 1				2 :			4			2		1			3	a 1	3		1		1		Adinehzadeh et al. 1999
1111po		11 2	11		1000		2			20				2 5			5	1	L 4	2		2 1		3				1			3			1		Ahmed et al. 2019
TIT CA		102 202	12 8		- 20	1	03/062		1000	6	3		4 1	1 1	1	2		2	1	1		3 1	1	2		1		L			1				1 1	
ECTODATA		11	11		10	_	_	2	_	14				4			9		1			6		1		1	1				3		1	4		Aimuzi et al. 2020
		6 10	4 1	0 12	6	10	4	1 1		8	5		11	5 4	10.00	- 164	1	3	3	3		3 2						1							_	Ait Bamai et al. 2020 👴
Genne	29	10	9	10		8	9		9 7		6 2	2	10 1	1	5	2		4		2	1	4	1			1	2	2			2				1	Akerblom et al. 2017
		5 5	16	5 4	2	2	2		1 2	1	1		1	1 1				1	1	2	-	3 1	L	1		1	1 1	1			1			1		Alderete et al. 2019 😔
8:2 CI-PFESA	13	3 1	1 5	5	3	1	2		1	3	1		2	2 2			1		1			1														Alkhalawi et al. 2016 👴
6:2 FTSA	11	3	3	5	1			1	2 1		1		4	1		1		1		1																Allendorf et al. 2019
HFPO-TA 6	6	1 1	2	1	1	1	2		1				1	2 1								1														Alves et al. 2016 👴
ADONA 5	5	1	1	1		1	2		2		1		2	2	1	1		2		1		1	L				2	2		1	1	1				Ammitzboll et al. 2019
PFO4DA 5	5	1 2	1	2	1	2	1		2 1		1		1	1 1	1			1		1	_	1 1					1	L								Andersson et al. 2019 👴
PFO5DoDA 5	5	1 3		2	1	3			3		1		1	1	2					2		1 2	2				1	1								Annunziato et al. 2019 👴
PFPeS 5	5	2 1	1	L	1			1	1	1			1					1									1	1								Annunziato et al. 2020 👴
Nafion BP2 2	2	2		1		1			1						1					1		1	L													A-tit-1 2012
PFNS 1	1	1						1																												Download Study List

Pelch KE, Reade A, Kwiatkowski CF, Wolffe T, Merced-Nieves FM, Cavalier H, Schultz K, Rose K, Varshavsky J. 2021. PFAS-Tox Database available at https://pfastoxdatabase.org DOI: 10.17605/OSF.IO/F9UPX

Health Outcomes


About

Search

In summary:

- Multiple PFAS exhibit several key characteristics of carcinogens
- Epigenetics and immune impacts are emerging as key mechanisms for PFAS carcinogenic properties
- Data gaps remain, and there is a need to investigate and screen poorly characterized PFAS
- Regulators and risk assessors can use this approach to effectively regulate groups and classes of PFAS

