Final Report of the Oklahoma Department of Agriculture, Food, and Forestry's Swine Licensed Managed Feeding Operations Monitoring Well Sampling and Laboratory Analyses Program for FY 2016-2017

Oklahoma Department of Agriculture, Food, and Forestry

FY16/17 §106 Project 09

CA# - I-006400-15

United States Environmental Protection Agency

Prepared in cooperation with the OKLAHOMA WATER RESOURCES BOARD

Table of Contents

Introduction	1
Purpose of the Project	2
Scope of Project	3
Methodology	3
Description of Report Appendices	4
Quality Assurance	4
Water Quality Sampling Procedures	4
Measurement of Depth to Water, Total Depth of Well and Purge Volume	5
Purge and Sample Extraction	5
Sample Collection	6
Sample Identification	7
Chain of Custody Documentation	
Quality Assurance Objectives	8
Field and Laboratory Results	10
Geographic Information System Data	10
Well Investigation	11
Laboratory Analytical Results	13
Results of Ammonium-N	16
Results of Total Phosphorus	16
Results of Nitrate-N	16
Well Selection Based on Reporting Limits	18
Groundwater Investigation Plans By Facility	21
ODAFF Historic and On-going Actions	73

List of Figures

Figure 1.	LMFO Facilities in Oklahoma	3
Figure 2.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 2, 5-D Swine	22
Figure 3.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 2, Hanor Major/Trails End BGF #1	
Figure 4.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 3, Hanor Major/Trails End BGF #1	25
Figure 5.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 1, Hanor Major/Trails End BGF #1	26
Figure 6.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 1, Hanor Major BGF #1	27
Figure 7.	Time-series plot of nitrate-nitrogen (NO_3 -N) and electrical conductivity (EC) for MW 7, Hanor Trails End BGF #1	29
Figure 8.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 10, Hanor Trails End BGF #1	30
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 11, Hanor Major/Trails End BGF #1	31
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 12, Hanor Major/Trails End BGF #1	32
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 22, Hanor Roberts Ranch Finisher #2	33
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 123, Hanor Roberts Ranch Finisher #2	34
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 106, Hanor Roberts Ranch Finisher #4	35
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 83, Hanor Roberts Ranch Finisher #5	36
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 115, Hanor Roberts Ranch Finisher #8	37
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 60, Hanor Roberts Ranch Nursery #1	38
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 90, Hanor Roberts Ranch Nursery #1	39
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 80, Hanor Roberts Ranch Nursery #8	40
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 16, Hanor Huffman G/F Sites 25-28	41
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 105, Hanor Roberts Ranch, Finisher 4.	42
	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 47, Hanor Roberts Ranch, Finisher 10	43
Figure 22.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for MW 81A, Hanor Roberts Ranch, Nursery 8	44

Figure 23.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 91, Hitch Enterprises Nursery Sites #5-8	45
Figure 26.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 29, Murphy Brown Farms, Plum Thicket Nursery #3	50
Figure 27.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 37, Murphy Brown Farms, Plum Thicket Nursery #4	51
Figure 28.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 53, Murphy Brown Farms, Plum Thicket Finisher #2	53
Figure 29.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 409, Murphy Brown Farms, Trahern	54
Figure 30.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 60, Tumbleweed-Sagebrush	55
Figure 31.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 28, Seaboard Fairview Finisher #6	57
Figure 32.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 30, Seaboard Fairview Finisher #7	58
Figure 33.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 32, Seaboard Fairview Finisher #7	59
Figure 34.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 39, Seaboard Fairview Sow #2	60
Figure 35.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 254, Seaboard Nichols-Radcliff	62
Figure 36.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 19, Seaboard Stewart and Payne Finisher #1	64
Figure 37.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 22, Seaboard Stewart and Payne Finisher #2	66
Figure 38.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 24, Seaboard Stewart and Payne Finisher #2	67
Figure 39.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 10, Seaboard Stewart and Payne Finisher #3	68
Figure 40.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 580-04, Seaboard Watson Finisher.	69
Figure 41.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 580-07, Seaboard Watson Finisher.	70
Figure 42.	Time-series plot of nitrate-nitrogen (NO ₃ -N) and electrical conductivity (EC) for	
	MW 20, Tumbleweed Farms, Farm 6 BG	72

List of Tables

Table 1.	Precision Of Water Quality Parameters To Meet Stable Water Objectives	6
Table 2.	Manufacturers Performance Specifications For The Hydrolab© Quanta-G	6
Table 3.	Project Analytical Parameters: Container, Preservative, Holding Times, Reference	
	Methods and Reporting Limits	7
Table 4.	Precision And Accuracy Criteria Of Odaff Laboratory	9
Table 5.	Replicate Results	9
Table 6.	Total Number Of Monitoring Wells Investigated	12
Table 7.	2015-2016 Summary Statistics For Laboratory And Field Data	14
Table 8.	LMFO Monitoring Well Historical Sample Results	15
Table 9.	Period Of Record Summary Statistics Of Ammonium-N Concentrations	17
Table 10.	Period Of Record Summary Statistics Of Total P Concentrations	17
Table 11.	Period Of Record Summary Statistics Of Nitrate-N Concentrations	17
	Monitoring Wells With Increasing Nitrate And Electrical Conductivity Over Period Of Record	

List of Appendices

APPENDIX I	Summary of Project Costs for Work Performed
APPENDIX II	FY 2015-16 Monitoring Well Sampling Results

Introduction

In Oklahoma, large swine producing facilities containing more than 1,000 animal units in roof-covered structures for 90 consecutive days or more in a 12-month period and which use liquid waste management systems are defined as Concentrated Animal Feeding Operations (CAFOs) under the state CAFO Act. Legislation signed in 1997 and 1998 makes licensing of CAFOs mandatory by the Oklahoma Department of Agriculture, Food, and Forestry (ODAFF) and these swine facilities are referred to as Licensed Managed Feeding Operations (LMFOs). The animal waste generated by LMFOs is stored in wastewater ponds, or lagoons, located near the swine barns. The waste may contain large amounts of nitrates, ammonia, phosphorus and bacteria and, if not managed properly, can impact groundwater quality. LMFOs must effectively deal with the manure and wastewater animals produce so that waters of the state, including groundwater, are not polluted.

Concentrated animal feeding operations are defined as point sources subject to the license program established pursuant to the provisions of the Act. Title 2 §20-12 of the Oklahoma Swine Feeding Operations Act relates to measures put in place that prohibit the hydrologic connection between generated wastewaters from these point sources and waters of the State (including groundwater sources). To prevent contamination of groundwater from leaking LMFO lagoons, the CAFO Act and rules have strict lagoon construction criteria in place. Even with proper lagoon construction at a facility, leakage from the lagoon to the groundwater might occur. The Act requires all swine LMFOs to install a leak detection system or monitoring wells around the perimeter of each animal wastewater lagoon. Key provisions of this Act include: 1) standards for liquid waste retention structures (lagoons); 2) liner requirements (including annual inspections to ensure liner integrity) to retain liquid animal wastes; 3) establishment of a minimum separation (10 feet) between the bottom of the retention structure and the maximum historical groundwater elevation; 4) installation of a leak detection system or sufficient monitoring wells around the perimeter of each retention structure and 5) annual collection of groundwater samples for comparison against established baseline data.

To meet the requirement in the Act showing no hydrologic connection has developed between the swine wastewater in lagoons and the groundwater, a lagoon monitoring well sampling program was developed by ODAFF. Beginning in the fall of 1999 to the present year, yearly sampling of the monitoring wells around the waste lagoons for nitrate-nitrogen, ammonium-nitrogen, total phosphorus, fecal coliform bacteria, pH and electrical conductivity (parameters specified by the Act) is conducted. The baseline data for the facilities serves as a reference point to potential change in groundwater quality over time. The main goal of the monitoring program is to determine if groundwater resources at or near the LMFOs are being subject to any degradation as a result of the operation of the facility and storage or land application of the animal waste.

The work conducted this year and the results of that work are the subject of this report which is funded in part by a Clean Water Act §106 grant from EPA. Special thanks to the Office of the Oklahoma Secretary of Energy and Environment (OSEE) for continuous approval of the use of these Clean Water Act funds to offset the costs of the monitoring well sampling program.

Purpose of the Project

ODAFF, through OSEE, submitted a work plan proposal to the U.S. EPA seeking federal Clean Water Act §106 grant funds to support statewide monitoring well sampling objectives at swine LMFOs. Beginning in the fall of 1999 and continuing through the end of FY 00, ODAFF staff collected the initial round of sampling as required by provisions in the Act. ODAFF again collected samples during the second year of monitoring. Beginning in September 2001 (the start of the third year of the sampling program), ODAFF contracted the sampling work to the Oklahoma Water Resources Board (OWRB) through an Interagency Agreement and this arrangement has continued uninterrupted to the present time. This report covers Sample Year 17 (2015-2016).

The EPA approved a work plan for this project entitled, Licensed Managed Feeding Operations Monitoring Well Sampling (FY16/17 §106 I-006400-15, Project 9). It covers the time period frame from July 1, 2015 through June 30, 2017 with a corresponding budget period beginning July 1, 2015 through June 30, 2017. The base funding was for the amount of \$170,000 (federal resource allocation).

Stipulated in the Interagency Agreement was the requirement that before commencement of any work on the project, a Quality Assurance Project Plan (QAPP) must first be approved by EPA. EPA requires approved QAPPs for all applicable projects and tasks using federal funding and involving environmental data to ensure the project and task is documented and reviewed before the work is started. A QAPP is a written document that describes the quality assurance procedures, quality control specifications, and other technical activities that must be implemented to ensure that the results of the project or task to be performed will meet project specifications. Primary data collection, secondary data usage, and data processing project activities are described and documented in QAPPs.

The current QAPP was approved by EPA on August 2, 2016 (QTRAK 13-443). The ODAFF/OWRB performed an annual review of the QAPP and applied for re-certification because of personnel changes in July 2016. These changes were approved by EPA in August 2016 and QAPP is current until July 28, 2019.

For this report, the ODAFF evaluated if concentrations of nitrate and other parameters in the groundwater around the swine lagoons are increasing over time at LMFO facilities. The report presents groundwater quality data obtained from the annual investigation and sampling of 939 monitoring wells between October 2015 and June 2016. The report provides a comprehensive summary of all laboratory data, analysis of the sampling protocols and an accounting of the total expenditures under this agreement by the OWRB. This report also provides general details of enforcement and remediation activities required by ODAFF of the swine LMFO licensees based on monitoring well sampling results.

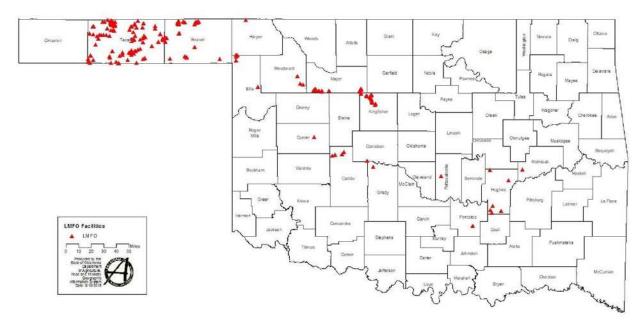


Figure 1. LMFO Facilities in Oklahoma

Scope of Project

Methodology

ODAFF's swine LMFO monitoring program objective is to: (1) evaluate if over time concentrations of NO₃-N in the groundwater are increasing above 10 mg/L, which is the Safe Drinking Water Act maximum contaminate level, the highest level of a contaminant that is allowed in drinking water, and (2) to better understand the groundwater flow regime and the possible effects of effluent land application or potential leakage from lagoons or offsite influence.

ODAFF also reviewed electrical conductivity (EC) results from the wells. Electrical conductivity, or specific conductance, is a measure of water's ability to conduct electricity, and therefore a measure of the water's ionic activity. Higher EC reflects higher salt content in groundwater. If over time, the amount of dissolved constituents in groundwater changes, the EC will also change so that a rise or decline in nitrate content (and/or other ionic species) in groundwater often typically correlates with a corresponding response in EC. ODAFF specifically focuses on those wells whose NO₃-N content has increased by more than 2.5 mg/L above the drinking water MCL (10 mg/L), with a minimum of five annual occurrences, and whose EC has a corresponding increase of 25% or more over the period of record. These wells are placed on Table 12, Monitoring Wells with Increasing Nitrate and Electrical Conductivity over Period of Record, of this document.

The historical (first year) data collected by ODAFF staff for each monitoring well establishes the baseline concentration for the project parameters that all subsequent analytical results are compared against. Consequently, they are the benchmark value that both the LMFO and ODAFF compliance staff work from as far as assessing changes in water quality over time.

LMFO licensees who have facilities with monitoring wells that meet or exceed these criteria are or have been required by ODAFF to make assessments and evaluations of causative affects and to take corrective action(s). Additionally, ODAFF has prepared time series graphs comparing nitrate-nitrogen and electrical conductivity of the 41 individual monitoring wells that appear on Table 12 of this years' report (see Groundwater Investigation Plans by Facility). The Groundwater Investigation Plans by Facility section of this report also indicate the dates of sampling events (including routine, intensified or special such as finger printing analysis or isotope testing), hydrogeologic investigation techniques and activities, drilling of new monitoring wells, closure of monitoring wells, and closure of lagoons.

Additionally, many of these wells have historically or are currently being investigated for potential sources because they meet the 2.5 mg/L nitrate and 25% EC (over baseline) increase. Some of the investigations due to increased parameters (NO₃-N and EC) have been determined to be from an offsite source or corrections/repairs were made and the status is to continue annual monitoring to evaluate NO₃-N and EC trends post correction/repair. If wells met the 2.5 mg/L NO₃ increase and 25% EC increase, ODAFF may have chosen to leave these wells on Table 12, but does not necessarily mean ODAFF will require additional work at this time.

Description of Report Appendices

Appendix I contains a summary of project costs (categories of expense) for the work performed by OWRB for this report.

Appendix II, and a separate electronic PDF file, contain data summaries of laboratory analytical and monitoring well data for the monitoring year subject of this report.

Quality Assurance

Water Quality Sampling Procedures

Sampling protocols, procedures and quality assurance practices were strictly adhered to by OWRB field sampling staff as described and documented in the Project's Quality Assurance Project Plan (refer to QAPP, on file at USEPA Region VI Offices) to help maintain the reliability and integrity of the data. There are three sections to the ODAFF QAPP: 1) the OWRB's field sampling standard operating procedures (SOP) for the LMFO monitoring program, chain of custody documentation and quality assurance objectives; 2) the ODAFF Inorganic Laboratory's Quality Manual that describes the quality assurance program used to determine the correctness and reliability of the analytical analysis performed by the Inorganic Section; and 3) the ODAFF Quality Management Plan, that ensures all environmental data generated by the agency will be of known and acceptable quality. Since the last QAPP recertification on August 13, 2013 for this project, there have been certain personnel changes that were sent by letter from ODAFF on July 17, 2014 to EPA via the Office of the Secretary of Energy and Environment to update and recertify the QAPP. EPA approved the changes to the QAPP in August 2016 and it is certified until July 28, 2019.

In general, the project field tasks are:

Verify secure status of well with the presence of ODAFF numbered security seal

Measure well and water level depth and determine purge volume (3+ well volumes)

Select appropriate sampling equipment for bailed versus pumped wells

Monitor field parameters throughout the purging process to verify stabilization of the water prior to using the Hydrolab@Quanta-G multi-parameter water quality monitoring system

Collect samples (process/preserve/package) following the purge process

GPS well

Decontaminate sampling equipment

Dispose of purge water and re-secure the well

Maintain chain of custody documentation

The data collected during the monitoring project will:

Determine water characteristics of each water sample that will serve as indicators of stable ambient water prior to sample collection, and

Determine nutrient and physical parameter concentrations of nitrate-nitrogen, ammonium-nitrogen, total phosphorus, fecal coliform bacteria, pH and electrical conductivity

Measurement of Depth to Water, Total Depth of Well and Purge Volume

The depth to water (DTW) and total depth (TD) of the well is measured from top of the casing (to the nearest .01 feet), and their difference (TD-DTW) represents the initial column water height (CW, feet). The values for DTW, TD and CW are recorded on the Monitoring Well Purge and Sampling Data Forms field sheets. For 2-inch (diameter) wells, the initial well volume (WV) in gallons is determined by multiplying the CW by 0.163 (cubic feet (CF)-volumetric conversion factor, feet to gallons). The purge volume criteria (before sample collection) is three well volumes. The WV (gallons) is multiplied by a factor of 3 to determine the purge volume for the well. These values as well as the well number and purge volume are recorded on the field sheets.

Purge and Sample Extraction

Uniform sampling procedures as documented in the QAPP were used to ensure sample representativeness. A minimum of three well volumes were pumped/bailed from each monitoring well to purge stagnant water from the water column (this held true in most cases although some wells yielded only fractions of a well volume). Companion to the removal of three well volumes were collections of periodic water stabilization indicator parameters (pH, specific conductance, temperature, and dissolved oxygen) using Hydrolab-Quanta-G water quality monitoring systems. These indicators enabled field staff to observe convergence of field parameter readings at the conclusion of the pumping/bailing process, ensuring that a representative sample of the aquifer would be the end result. The criteria in Table 1 will satisfy the project requirement for purge water stability. After these conditions are met, sample collection can occur. For complete sampling procedures and methods used for groundwater data collection at swine LMFOs, see the QAPP.

Table 1. Precision of Water Quality Parameters to Meet Stable Water Objectives

Precision Criteria for Field Parameters Bailed Parameters	Precision Criteria for Field Parameters Pumped Parameters			
SC +/- 5% microsiemens/centimeter (μS/cm)	EC +/- 3% μS/cm			
pH +/- 0.2 standard pH units (s.u.)	pH +/- 0.2 standard pH units			
T +/- 0.5 degrees Celsius (C)	T +/- 0.2 degrees Celsius			
DO mg/L	DO +/- 0.3 mg/L			

These criteria relate to the end of the purge cycle time and should hold for at least 2 successive readings. If criteria cannot be met, purge another well volume, collect 3 reading and calculate their mean for use as final water stability values. EC = electrical conductivity; T = temperature; DO = dissolved oxygen

Table 1 lists the instruments performance specifications. Project requirements for precision shown in Table 1 above are achievable based on the instruments specifications shown in Table 2.

Table 2. Manufacturers Performance Specifications for the Hydrolab© Quanta-G

Parameter	Range	Accuracy	Resolution
EC	0-100,000 μS/cm	+/- 1% of reading +/- 1 count	4 digits
рН	2 to 12 units	+/- 0.2 s.u.	0.01 .s.u.
Т	-5°C to 50°C	+/- 0.2 °C	0.01°C
DO	0 to 50 mg/L	+/- 0.2 mg/L , 20 mg/L	0.01 mg/L
		+/- 0.6 mg/L > 20 mg/L	

Sample Collection

Samples were collected as soon as possible after the purging process was deemed complete based on water quality purge stability criteria (to maintain the representativeness of the sample). Polyethylene sample bottles were used for nutrient and physical parameter sample collection and sterile microbiological plastic bottles were used to containerize water to be analyzed for fecal coliform content. Sample bottles remained capped prior to sample collection. The 500 mL sample bottles were pre-rinsed (3 times) with groundwater (from bailer or pump sample tubing) by filling 150-200 mL, capping and swirling the rinse water to contact all interior surfaces. Following drying of the residue (drops), the bottles for were tilted and slowly filled to the neck of the bottle, and added sulfuric acid to pH<2 mg/L to preserve the sample. The 100 mL bottle (for fecal coliform analysis) was only filled to the 100 mL marked line on the bottle that left about an inch of headspace in the bottle. Table 3 shows the constituents that were analyzed, as well as their collection and analysis methods.

Table 3. Project Analytical Parameters: Container, Preservative, Holding Times, Reference Methods and Reporting Limits

Parameter	Parameter Container		eter Container Preservative Holding T		Holding Times	Reference Method	Laboratory Reporting Limit	
Ammonium- Nitrogen	500 mL Polyethylene	H ₂ SO ₄ , ice	28 days	EPA 350.1	0.11 mg/L			
Fecal Coliform Bacteria	Sterile microbiological plastic bottle	Na ₂ S ₂ O ₃ , Ice	24 hours	SM-9222-D	1 CFU/100 ml			
Specific 500 mL Conductivity Polyethylene		Ice	28 days	EPA 120.1/SM- 2510-B	1 μS/cm			
Nitrate- Nitrogen	500 mL Polyethylene	Ice	48 hours	EPA 9056/EPA 300.1	0.02 mg/L			
pH 500 mL Polyethylene		Ice	Instantaneous	EPA 150.1/SM4500H- B	ODAFF project management requires this test. Results will be flagged. EPA requires pH determination withir 15 minutes of sample collection			
Total Phosphorus	500 mL Polyethylene	H ₂ SO ₄ , ice	28 days	EPA 365.1	0.02 mg/L			

Sample Identification

Clear, adhesive shipping labels are fixed to the sample bottles prior to the sample workweek. The labels are computer generated and include the following pre-information; the LMFO company name, the name of the facility, the well number, and the preservative type. Other label fields that are completed during the purge process with sharpie markers (blue for iced 500 mL sample, red for acidified 500 mL sample, and black for the fecal sample) include the date and time, sampler(s) initials, and sample type that is a number between 1 and 4 which denotes environmental, split or replicate, trip and field equipment blank respectively. The bottle lids are also labeled with the well number (using the corresponding red, blue or black color) and the word "acid" is written on the lid of the bottles preserved with acid as a safety precaution for the lab personnel.

The red-labeled bottle are preserved with sulfuric acid (<2 pH) immediately after sample collection. Lids are secured and the 500 mL sample bottles are placed at the bottom of the chests and completely imbedded with crushed ice. The 100 mL bottles are double bagged (zip lock type) to insulate the samples from over-chilling and to prevent melt water from potentially contaminating the sample. These

samples are then placed in to the ice chest so that the crushed ice comes to the level of the top cap. This process also stabilizes the sample bottles reducing the likelihood of tipping.

Chain of Custody Documentation

For each well sample submitted for analysis, the following information was included on the Chain of Custody form:

LMFO company name, facility name, license number and well ID number(s)

The samplers name (printed) and signature

The date and time the samples were relinquished to the courier or the lab

List of analytical parameters

Preservative type(s)

The QA code which corresponds to sample type (environmental, replicate or split etc.)

The sample date and time for each corresponding sample

The total number of sample containers that accompany the particular chain of custody

Sample delivery mode (by courier or field sampling crew)

Mailing address of LMFO company for billing purposes and for analytical results delivery

Space is also provided on the Chain of Custody form so that ODAFF laboratory personnel may perform/record the following operations:

Sign, date and record the time of sample delivery

Login the sample and assign the internal sample tracking number which is then recorded on the Chain of Custody form

Insert comments that relate to sample integrity or security and/or labeling or transcription errors by OWRB personnel or non-agreement in count of total sample containers reported by OWRB on the Chain of Custody form as to the number of sample containers in the ice chest, etc.

Quality Assurance Objectives

An important aspect of any monitoring plan requires that analytical results can be reproduced by the analytical laboratory and that field sampling techniques are designed and carried out so as not to affect the integrity of the sample. The OWRB/ODAFF Quality Assurance Project Plan (QAPP) approved by EPA is the guiding document on the methods/protocols used to collect, preserve and safely deliver samples from the field to the receiving laboratory. Another point of emphasis described in the document relates to maintaining a consistent schedule of equipment calibration, using clean sampling techniques, and cleaning (decontamination) of sampling equipment prior to its subsequent use at the next well.

Quality Assurance (QA) samples are collected and used to document the laboratory's analytical capabilities in reproducing analytical results. QA samples are also used to test if field-sampling personnel are collecting and handling samples and maintaining their sampling equipment in a manner that will limit the possibility of sample contamination, ensuring that a representative groundwater sample is collected.

Replicate samples were collected from 38 monitoring wells. Replicate and environmental sample agreement occurred 85.4% of the time utilizing a formula that calculates relative percent difference and accounting for the laboratory's precision and accuracy levels (described in the QAPP) based on concentration ranges (Tables 12 & 13). There were two (2) Total Phosphorous replicate pairs with greater than 100% RPD.

Table 4. Precision and Accuracy Criteria of ODAFF Laboratory

Analyte Concentration	nalyte Concentration Precision		Completeness	
> 2 mg/L	10% (90-110%)	90-110% or +/- 3sd	90%	
>0.1 to 2 mg/L	25% (75-125%)	75-125% or +/- 3sd	90%	
<0.1 mg/L to <100 ug/L	50% (50-150%)	50-150% or +/- 3sd	90%	

Table 5. Replicate Results

Replicate Parameter	Total # of Replicates	Non-Detect	Average RPD	Non-Conforming Samples
Fecal Coliform	38	37		0
Nitrate-nitrogen	38	1	3.64%	3
Total Phosphorous	38	2	22.90%	8
Ammonium-nitrogen	38	36	11.35%	0

A total of 33 QA "blank" water samples were submitted during the course of project sampling. Blank samples and their results serve to determine if OWRB's cleaning protocols were adequate to prevent contaminants being transferred to subsequent monitoring well sites and to serve as a check on the integrity (chemical neutrality) source of the blank water.

Analytical results for 30/33 blank samples were non-detect for nitrate-nitrogen. The three "hits" were at low concentrations (0.03, 0.03 and 0.06 mg/L). No specific cause was ascertained though the levels found in the three samples were negligible. "Blank" analytical results for ammonium-nitrogen were non-detect. Analytical results for 32/33 blank samples were non-detect for total phosphorous. The laboratory sample containing detectable total phosphorous had a value equal to the detection limit of 0.02 mg/L. Overall, the results of the blank sample analysis are strongly indicative that the measures taken and protocols used to clean sampling equipment prevents any significant carryover of contaminants from one well to another.

The OWRB believes that the results of the quality assurance samples bears out that using methods and protocols as prescribed in the EPA approved QAPP for this program will lead to scientifically credible results by limiting bias from either sample collection/handling or laboratory analytical procedures.

Field and Laboratory Results

This report will provide a comprehensive summary of all laboratory data, analysis of the sampling protocols, ArcView GIS shape files that incorporate location and attribute information for new monitoring wells and an accounting of the total expenditures under this agreement including the category of expense (provided by the OWRB). This report will also provide details of enforcement and remediation activities required by ODAFF of the swine LMFO licensees based on monitoring well sampling results.

Analytical data for groundwater samples collected by OWRB field staff is provided by the ODAFF Laboratory Services Division, Water and Inorganics Section. They are certified (Lab Certification #9927) to perform general water quality chemistry through the State of Oklahoma Department of Environmental Quality's laboratory certification program. They are responsible for receiving, analyzing and reporting out parameter concentrations under this project. For documentation of their internal operations with respect to instrument calibration, procedures, calibration frequency and analytical procedures utilized, refer to the ODAFF Inorganic Section Quality Manual and Standard Administrative Procedures in the QAPP.

The data collected by the OWRB will be used by ODAFF to determine if pollution to groundwater resources adjacent to LMFO facilities is occurring. Specific response actions by ODAFF to data collected for this program are described in the section of this report entitled, "Groundwater Investigation Plans by Facility". Evaluation of the data has triggered special studies of nitrate and microbial sources and has involved the sampling of domestic wells in areas potentially impacted by swine wastes to provide additional information. ODAFF has required corrective action measures to be implemented by LMFO companies based on sampling results and facility inspections. A LMFO's failure to comply with ODAFF requests to implement corrective actions can lead to enforcement actions against the LMFO.

Geographic Information System Data

Program monitoring wells have been GPS surveyed and GPS files have been exported to ArcGIS. Historical water quality has been uploaded to the geodatabase. The geodatabase will allow for better project organization and provide a direct relationship between the wells and the associated water quality data results from the ODAFF lab.

Key attribute fields included in the geodatabase are:

- 1. Licensee Legal Licensed Name Swine Entity,
- 2. License Number OK State Swine CAFO License Number,
- 3. Primary ID Links groups of wells to a particular facility; primary reference number to link to the water quality table,
- 4. Facility Name Swine facility name and/or type (sow, nursery, finisher, etc.),
- 5. Well Number,
- 6. Legal Location of facility/wells,
- 7. Gradient (Up or down gradient status of the monitoring well relative to its position adjacent to the lagoon and local groundwater flow direction at the facility),
- 8. Well status (Active, Active-Idle or Inactive),
- 9. Total Depth (Depth of Well in Feet Below the Top of the Casing),
- 10. First sampling period (When the sampling period of record began),
- 11. Last Sampling period (the last sampling period the well was utilized in the monitoring

- program prior to its abandonment-place holder status),
- 12. Return Date Relates to wells with status of AI (Active-Idle) that were dry for three consecutive years that were placed in an idle status for three years and then returned to the monitoring program to evaluate if the well had received recharge,
- 13. Latitude and Longitude (GPS coordinates of the well location).

Well Investigation

Nine-hundred thirty-nine (939) monitoring wells were investigated during the 2016 sampling period. Samples were collected from 369 monitoring wells between October 13, 2015 and April 28, 2016, and 570 monitoring wells were evaluated as dry.

Relative to dry wells, an amendment to Title 2 of the Oklahoma Statutes, House Bill 3015 (HB 3015), that was enacted into Law on July 1, 2006, stipulated that the frequency of sampling/evaluating wells that have been found to be dry for at least three (3) consecutive years may be reduced to once every three years. As a consequence of HB 3015 and as reflected in Table 6 below, the total number of monitoring wells investigated and total number of reported dry wells is variable over time (particularly beginning in 2007). If an intermittently wet/dry well is examined and found to be dry for three (3) consecutive years; then like perpetually dry wells, the wells are dropped from evaluation for three (3) consecutive years. Monitoring well sampling and investigation results since the inception of the LMFO well program are summarized in Table 6.

Table 6. Total Number of Monitoring Wells Investigated

Dry Wells	Wells Sampled	Monitoring Wells Investigated (includes sampled and dry wells)	raiailicici	Darameter
448	362	810	2000	
342	437	779	2001	8
473	457	930	2002	8
509	496	1005	2003	6
506	582	1088	2004	
535	519	1054	2005	()
552	521	1060	2006	6
59	515	575	2007	
19	541	560	2008	Fiscal Year
11	551	562	2009	S).
493	590	1083	2010	
56	584	640	2011	
34	544	578	2012	
36	386	606	2013	
512	387	899	2014	
556	374	930	2015	
570	369	939	2016	

Laboratory Analytical Results

Project laboratory analytical parameters specified in the work plan included nitrate-N, ammonium-N, total P, fecal coliform bacteria, pH and electrical conductivity (EC). The ODAFF Laboratory Services Division, Water and Inorganics Section performed the analytical work.

During previous years, monitoring wells were subject to re-sampling if nitrate-N or ammonium-N concentrations exceeded thresholds established by the ODAFF Director of Agricultural Environmental Management Services Division (AEMS). The threshold values pertain to wells that have: increasing nitrate concentrations from baseline conditions that are at least 2.5 mg/L greater than the MCL (10 mg/L); electrical conductivity that has increased at least 25% over the Bench Electrical Conductivity (BEC) and five or more years of data.

However, beginning in sampling year 2013-2014, no re-sample events were scheduled due to budget reductions to this program. Only one round of sampling per well resulting in the comprehensive suite of parameters described above was performed and continues to be performed in this fiscal year. Consideration of re-instatement of re-sampling for wells that meet the above criteria will be on a year-to-year evaluation.

Table 7 shows summary statistics for laboratory analytical and supporting field data for the initial phase of sampling. The minimum and maximum values are listed with their corresponding facilities and the median and mean are for the entire sampling year dataset.

Monitoring well sampling results since the inception of the well LMFO sampling program are summarized in Table 8.

Table 7. 2015-2016 Summary Statistics for Laboratory and Field Data

Field EC in µS/cm	Field pH in SU	Lab EC in µS/cm	Lab pH in SU	Total P	Ammonium- N	Nitrate-N	Fecal coliform	Parameter
2.82	5.63	100	6.39	0.02	0.17	0.02	0	Minimum Value
Hanor Roberts Ranch	W-7 Swine Farm	L & M Farms Trust	Hanor Roberts Ranch	Bolin Hog Facility	5-D Swine, Inc.	Mansion Farms	Hanor Trails End BGF #1	Min. Value Corresponding Facility
96	s	1	105	6A	ы	5	10	Corr. Monitoring Well
13883	8.35	14200	8.26	18.70	3.64	174	74	Maximum Value
Houston Contracting Farms, LTD.	SB Stewart and Payne Finisher (420-423)	Houston Contracting Farms, LTD.	Mansion Farms	L & M Farms Trust	Murphy Brown Trahern	Murphy Brown Tumbleweed-Sage Brush	W-7 Swine Farm	Max. Value Corresponding Facility
2	21	2	3	1	414	60	3	Corr. Monitoring Well
750	6.92	788	7.36	0.34	0.58	9.21	0.01	Median
1245	6.91	1260	7.32	0.91	1.16	13.7	0.26	Mean

Wells w/3 or more FEC colonies	Wells with fecal coliform (FEC)	Total P < 0.02 mg/L	Total P > 0.5 mg/L	Total P detections (>/= 0.02 mg/L)	Ammonium-N < 0.11 mg/L	Ammonium-N >/= 1 mg/L (Includes 1 st and re-sample events)	Ammonium-N detections >/= 0.11 mg/L	Nitrate-N < 0.02 mg/l	Nitrate-N >/= 10 mg/L (Includes 1 st and re-sample events)	Nitrate-N detections >/= 0.02 mg/L	Parameter
N/A	N/A	N/A	35	341	N/A	ω	7	N/A	90	328	2000
N/A	N/A	N/A	33	327	N/A	17	34	N/A	138	425	2001
N/A	13	N/A	75	351	N/A	16	68	N/A	192	442	2002
N/A	12	N/A	85	362	N/A	00	35	N/A	210	482	2003
N/A	14	N/A	130	391	N/A	12	29	N/A	215	495	2004
N/A	12	N/A	76	382	N/A	10	25	N/A	213	485	2005
11	19	N/A	71	368	N/A	12	48	N/A	232	506	2006
∞	16	N/A	78	360	N/A	7	25	N/A	234	497	2007
7	11	N/A	72	396	N/A	6	28	N/A	259	529	Fiscal Year 2008
15	18	N/A	78	396	N/A	10	23	N/A	271	526	ar 2009
9	17	N/A	91	380	N/A	7	25	N/A	272	528	2010
7	12	19	155	391	375	6	29	10	292	515	2011
7	13	17	132	389	389	10	17	10	304	530	2012
6	12	9	178	377	363	11	23	13	362	373	2013
9	15	9	134	376	368	4	17	7	184	378	2014
ω	6	16	166	363	345	5	16	29	155	355	2015
5	6	31	140	353	360	5	15	17	160	359	2016

Results of Ammonium-N

Ammonium-N was detected in 15 monitoring well samples in 2015-2016 (4% of 369 samples analyzed). Historically, detection of NH_4^+N in monitoring wells samples has ranged from 2 to 20 percent of the sample events over sixteen sampling cycles. See Table 9 on the following page.

Results of Total Phosphorus

Total Phosphorous at a level of \geq 0.02 mg/L was detected in 353 monitoring well samples in 2015-2016 (95% of the 369 total samples). Thirty-one were less than 0.02 mg/L detection limit (8% of 369 samples). Reported concentrations have lowered slightly from 2015 to 2016 (see Table 10). Samples submitted for laboratory analysis are unfiltered, chilled and acidified. See Table 10 on the following page.

Results of Nitrate-N

Nitrate contamination generally decreases with increasing soil depth to ground water. Median nitrate concentration and percent of wells from which water exceeds the EPA drinking-water standard for nitrate (10 mg/L) are highest for shallow ground water (up to 100 feet deep). The water table in shallow wells is closer to the land surface and to potential sources of contamination, such as fertilizers and septic systems. In contrast, contamination is less likely to occur in deeper ground-water reservoirs because contaminants have farther to travel.

The numbers of samples that met or exceeded the ODAFF threshold values are as follows:

Nitrate-N ≥ 10 mg/L (that corresponds to EPAs Safe Drinking Water Maximum Contaminant Level (SDWMCL) occurred in 160 wells.

Ammonium-N ≥ 1 mg/L (EPA) occurred in five wells; same as in 2014-15 monitoring.

In 2016, NO₃-N in 17 monitoring wells was below the laboratory detection limit of 0.02 mg/L (5%). Nitrate was detected (\geq 0.02 mg/L) in 359 wells (97% of 369 samples). A total of 160 wells out of 369 wells sampled (43%) have nitrate values over 10 mg/L.

ODAFF's monitoring program's objective is to evaluate if concentrations of NO₃-N and other constituents in the groundwater are increasing over time at swine LMFO facilities. Summary statistics of NO₃-N are shown in Table 11 on the following page for 16 years of monitoring data. The median value of nitrate concentrations increased from 2015 to 2016, and the mean value for NO₃-N decreased in 2016. It should be noted that a majority of the new wells that ODAFF has required the LMFO Licensees to drill over time have targeted sites with high nitrates to better understand the groundwater flow regime and the possible effects of effluent land application or potential leakage from lagoons or offsite effluence. As a consequence, the number of monitoring wells at licensed facilities with known high nitrate nitrogen concentrations has risen whereas the number of monitoring wells at sites with lower nitrate concentrations has remained the same. This explains, in part, why the statistics shown in Table 11 reflect an upwardly increasing trend.

Table 9. Period of Record Summary Statistics of Ammonium-N Concentrations. Values reported are in units of milligrams per liter (mg/L).

Statistics.									Fiscal Year						,		
Statistic	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Minimum	0.30*	0.01*	0.12	0.01	0.16	0.07	0.11	0.11	0.12	0.22	0.12	0.15	0.20	0.12	0.11	0.13	0.17
Maximum	1.00*	7.00*	3.65	4.30	2.46	3.80	3.49	1.73	3.86	6.27	2.27	6.93	3.90	27.19	3.75	7.98	3.64
Mean	0.60*	0.70*	0.74	1.08	0.54	0.68	0.64	0.69	0.71	1.30	0.64	1.24	1.21	2.26	0.42	1.44	1.16
6											500			5		-	

^{*} Years 2000, 2001 had a small representative data set and a true minimum, maximum, and mean could not be computed.

Table 10. Period of Record Summary Statistics of Total P Concentrations. Values reported are in units of milligrams per liter (mg/L).

Mean	Maximum	Median	Minimum	Statistic	Statistic.
0.43	15.10	0.08	0.02	2000	
0.35	18.18	0.11	0.02	2001	
0.87	73.03	0.16	0.02	2002	
0.46	6.27	0.15	0.02	2003	
0.89	63.11	0.16	0.04	2004	
0.56	28.74	0.14	0.02	2005	
0.59	13.74	0.12	0.02	2006	
0.49	19.54	0.12	0.02	2007	
0.48	12.52	0.12	0.02	2008	Fiscal Year
0.59	22.24	0.12	0.02	2009	
0.46	14.06	0.14	0.02	2010	
0.87	18.74	0.28	0.02	2011	
0.73	10.93	0.25	0.02	2012	
1.24	28.28	0.42	0.02	2013	
0.82	25.91	0.27	0.02	2014	
1.40	21.00	0.15	0.02	2015	
0.91	18.70	0.34	0.02	2016	

Table 11. Period of Record Summary Statistics of Nitrate-N Concentrations. Values reported are in units of milligrams per liter (mg/L).

Mean	Maximum	Median	Minimum	Statistic	Chatistic
7.21	60.80	4.90	0.02	2000	
9.20	78.55	5.21	0.02	2001	
9.31	87.50	5.62	0.05	2002	
9.39	100.90	6.13	0.02	2003	
8.89	88.67	6.20	0.03	2004	
8.98	99.42	6.47	0.02	2005	
9.45	81.64	6.72	0.05	2006	
10.10	71.55	7.54	0.04	2007	12-12
11.18	207.20	7.80	0.04	2008	Fiscal Year
12.53	221.20	7.75	0.09	2009	200
12.61	92.62	7.86	0.04	2010	
13.31	99.51	9.27	0.04	2011	
13.76	108.30	9.18	0.02	2012	
14.92	110.2	9.68	0.03	2013	
14.79	144.52	9.65	0.22	2014	
27.52	178.0	8.15	0.02	2015	
13.78	174.0	9.10	0.02	2016	

Well Selection Based on Reporting Limits

Electrical conductivity (EC) is a measure of water's ability to conduct electricity, and therefore a measure of the water's ionic activity. Higher EC reflects higher salt content in groundwater. If over time, the amount of dissolved constituents in groundwater changes, the EC will also change so that a rise or decline in nitrate content (and/or other ionic species) in groundwater often typically correlates with a corresponding response in EC. Some monitoring wells have had significant increases in NO₃-N without a corresponding or proportionate increase in EC. However, it should be noted that swine lagoons contain extremely low amounts of NO₃-N.

Table 12 identifies wells that have increases in both NO₃-N and EC. Table 12 lists 41 monitoring wells (two fewer than reported last year) with at least five annual sample events whose NO₃-N content has increased over the period of record, whose NO₃-N content has increased by more than 2.5 mg/L above the drinking water MCL of 10 mg/L and whose EC has a corresponding increase of 25% or more over the period of record. Six of the 41 monitoring wells are new to this list and are marked with an asterisk (*). Table 12 identifiers include facility name, monitoring well number, baseline NO₃-N concentration (BNC), the 2015-2016 analytical value for nitrate, the baseline EC (BEC) value and the 2015-2016 laboratory value for EC.

Table 12. Monitoring Wells with Increasing Nitrate and Electrical Conductivity over Period of Record. New wells for FY 2016 are denoted by an asterisk (*) in the 'MW' field.

Facility Name	Facility	Monitoring Well No.	License No.	Baseline Sample Year	Baseline NO ₃ -N (mg/L)	2016 NO ₃ -N (mg/L)	Baseline EC (μS/cm)	2016 EC (μS/cm)
5-D Swine, Inc.		2	990003	2000	3.67	65.70	4555	6990
Hanor Huffman G/F Sites 25-28	Site 28	16*	990015	2000	10.18	15.50	347	467
		1	1311	2000	1.19	14.70	517	963
Hanar Major Farms	BGF#1	2	1311	2000	2.75	28.60	474	728
Hanor Major Farms	BGF#1	3	1311	2000	3.33	32.10	509	922
		6	1311	2000	11.42	42.40	203	534
	Cialabana	22	1489	2000	3.84	25.60	140	753
	Finisher 2	123	1489	2003	3.00	46.90	120	534
		105*	1489	2003	2.00	13.40	175	277
	Finisher 4	106	1489	2003	8.00	26.20	408	535
	Finisher 5	83	1489	2003	8.00	40.00	262	543
Hanor Roberts Ranch	Finisher 8	115	1489	2003	12.00	68.20	511	856
	Finisher 10	47*	1489	2000	4.77	22.20	295	1340
	N	60	1489	2000	7.61	19.30	234	430
	Nursery 1	90	1489	2003	8.00	17.20	238	6990 467 963 728 922 534 753 534 277 535 543 856 1340
	Numerous C	80	1489	2000	10.42	24.10	271	
	Nursery 8	81A*	1489	2011	19.07	31.70	306	425
		7	1311	2000	4.92	22.70	563	1360
Harris Trails Ford	005.41	10	1311	2000	4.54	22.10	525	922
Hanor Trails End	BGF#1	11	1311	2000	2.10	24.30	580	1000
		12	1311	2000	3.99	26.40	551	1070
Hitch Ent. Nursery Sites 5-8	Nursery 6	91	970008	2000	35.90	41.90	959	1500
L&M Farms Trust		3*	980002	2000	1.72	15.20	497	1100
Luthi Farms, LLC	Sow	1	980026	2000	8.85	22.50	595	839
**	Nursery 1	29	980019	2000	5.70	16.40	2760	4070
Murphy Brown Plum Thicket	Nursery 4	37*	980019	2000	8.10	12.70	1703	2760
	Finisher 2	53	980019	2000	7.00	16.50	1330	2050
Murphy Brown Trahern	Nursery 2	409	200011	2001	4.00	18.00	512	703
Murphy Brown Tumbleweed/Sagebrush	Sow	60	980011	2003	0.10	174.0	1.00	3440
-	Finisher 6	28	1356	2000	15.78	21.40	554	711
Seaboard Fairview	Cinichau 7	30	1356	2000	5.26	18.10	285	484
Seaboard FairView	Finisher 7	32	1356	2000	24.70	41.70	900	1190
	Sow 2	39	1354	2008	14.68	19.60	536	736
Seaboard Nichols Radcliff	Nursery 137	254	990012	2000	8.80	15.30	746	1120

Facility Name	Facility	Monitoring Well No.	License No.	Baseline Sample Year	Baseline NO ₃ -N (mg/L)	2016 NO ₃ -N (mg/L)	Baseline EC (μS/cm)	2016 EC (μS/cm)
	Finisher 1	19	12623	2000	12.48	18.10	519	676
Seaboard Stewart & Payne	Finisher 2	22	12623	2000	9.43	42.50	764	1240
Seaboard Stewart & Payrie	Fillisher 2	24	12623	2000	4.77	22.70	684	EC (μS/cm) 676
	Finisher 3	10	12623	2000	8.25	16.10	948	EC (μS/cm) 676 1240 1000 1230 1050 1020
Seaboard Watson	Finisher 424	580-04	12613	2001	8.48	70.80	752	1050
Seaboard Watson	Finisher 424	580-07	12613	2008	26.21	46.90	566	1020
Tumbleweed, LLC	Farm 6 BG	20	1412	2000	3.8	66.1	1243	2750

Groundwater Investigation Plans By Facility

ODAFF, Agricultural Environmental Management Services Division (AEMS), has required additional assessments and evaluations of specific monitoring wells based on the sampling data acquired from the LMFO Monitoring Well Sampling and Laboratory Results Program. These facilities are reported as the 2015 Table 12. Increased monitoring efforts were and are required by ODAFF of specific swine feeding operation licensees for certain ODAFF identified monitoring wells that meet the ODAFF criteria of an increase in nitrate levels above 12.5 mg/L and a 25% increase above baseline electrical conductivity. ODAFF has required Swine Feeding Operation LMFO licensees to conduct additional evaluations/assessments and when appropriate, to take corrective actions. The additional required monitoring, plus timelines and assessments and evaluations of causative effects for the increased nitrates and electrical conductivity follow.

Each investigation plan contains time-series plots of nitrate-nitrogen and electrical conductivity for listed monitoring wells. Time-series plots were generated using mean values for each fiscal year. If only one sample was recorded for the fiscal year, this value was used. Mean values are denoted with an asterisk (*) next to the year on the x-axis.

5-D SWINE

MW# 2: was newly listed to the 2015 Table 12 and continues to be on the 2016 Table 12. On February 2, 2015, the consultant for the facility submitted a proposed plan to investigate the groundwater by: 1) recording groundwater elevations and determining groundwater flow direction; 2) sample groundwater monitoring wells and the lagoon and develop Stiff and Tri-Linear plots and 3) report back to ODAFF. ODAFF approved the plan by letter dated February 17, 2015 and set a due date for the report as May 1, 2015 with a request for all analytical data, diagrams and recommendations for next steps to also be submitted. The reports were received by ODAFF on April 28, 2015 and June 29, 2015.

On July 2, 2015, ODAFF sent a letter to continue quarterly sampling of MW# 2 until September 2015 with quarterly reports due October 30, 2015, December 31, 2015, March 31, 2016, June 30, 2016 and the final report due August 15, 2016. ODAFF will review and assess the report for further investigations.

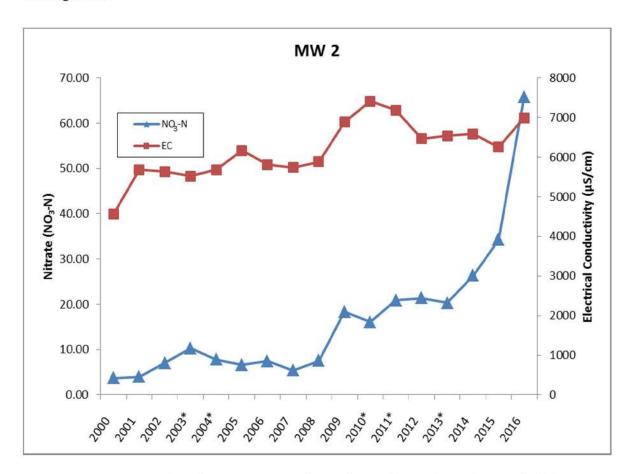


Figure 2. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 2, 5-D Swine. Years denoted with an asterisk (*) represent mean values for the sampling year.

HANOR, INC.

A Groundwater Monitoring Program to address the concerns associated with monitoring wells at the Hanor Swine Feeding Operations LMFOs/CAFOs at Hanor Roberts Ranch, Hanor Trails End BGF#1, Hanor Trails End BGF #2 and Hanor Major Farms was submitted by Hanor to ODAFF on November 14, 2013. The plan assigned an Impact Level ranging between 1 and 4 to each well, with quarterly, bi-annual, or annual monitoring, as the basis for the Plan. It was approved by ODAFF on November 26, 2013. It summarizes the future investigative activity requirements for their impacted wells. These wells included: MW# s 2, 3, 7, 10, 11, 12, 13, 22, 47, 60, 68, 80, 82, 83, 90, 97, 105, 106, 107, 112, 115, 121 and 123.

On November 12, 2014, the annual review of the groundwater monitoring plan was received by ODAFF. This report covered MWs # 2, 3, 7, 82, 83, 112, 105, 106, 47, 121, 123, 60, 115, 22, 80, 90, 107, 11, 12, 13, 10, 68 and 97 at Roberts Ranch, Hanor Major and Trails End facilities. These wells were sampled quarterly, bi-annually or annually. The laboratory analytical results from November 2013 to August 2014 were included, as were Concentration vs Time Graphs for each well. Groundwater recommendations were developed for each well for further evaluation to determine the source and associated cause of the elevated nitrates and TSS levels. The next sampling event was scheduled for November 2014.

On December 30, 2014, ODAFF contacted Hanor by letter which addressed increasing nitrate in monitoring wells at farms:

Hanor Major/Trails End BGF #1-MW #s 2, 3, 7, 10, 11 and 12

Hanor Roberts Ranch Finisher 2-MW #s 22 and 123

Hanor Roberts Ranch Finisher 4-MW # 106

Hanor Roberts Ranch Finisher 5—MW #s 83, 111 and 112

Hanor Roberts Ranch Nursery 1-MW #s 60 and 90

Hanor Roberts Ranch Nursery 3-MW #91

Hanor Roberts Ranch Nursery 8-MW #80

Hanor Trails End BGF #2-MW #13

A plan specifying procedures to determine if groundwater near these monitoring wells is subject to degradation due to current waste management practices was due to ODAFF by February 13, 2015. The letter also requested that Hanor include the following information as part of plan deliverables: 1) testing for Na, Mg, Ca, K, pH, B, Cl, NO₃-N, SO₄-S, CO₃-2, HCO₃, Total Soluable Salts, EC, SAR, Total Dissolved P (ICP from water sample) and NH₄-N; 2) sampling from the waste retention structure for Na, Mg, Ca, K, pH, B, Cl, NO₃-N, SO₄-S, CO₃-2, HCO₃, Total Soluable Salts, EC, SAR, Total Dissolved P (ICP from water sample) and NH₄-N; 3) Stiff and Tri-Linear diagrams to assess any correlation between the lagoon contents and the chemistry of the monitoring wells and 4) any other pertinent areas to be used to evaluate the subsurface conditions.

The report was received by ODAFF on February 13, 2015 for the following wells:

MWs# 2 and 3: Major/Trails End BGF #1.

These wells were on the 2015 Table 12 and continue to be on the 2016 Table 12. On February 13, 2015, the consultant submitted a proposed groundwater assessment plan for Monitoring Wells #2 and 3 that included: 1) top of casing elevation survey and current groundwater elevations to determine current groundwater flow direction; 2) sample the monitoring wells and lagoons and develop Stiff and Tri-Linear diagrams to fingerprint groundwater; 3) perform isotope studies of monitoring wells; and 4) report findings to ODAFF. ODAFF approved this plan on March 6, 2015 and asked for additional items to be submitted: 1) description of groundwater sampling activities; 2) current map of groundwater flow; 3) tabulated analytical results and lab reports; 3) Tri-Linear and Stiff diagrams; and 4) recommendations for any additional actions based on results, to be received no later than August 31, 2015. ODAFF reviewed and responded to a request for supplemental monitoring based on the results of the August 31, 2015 report. A plan of action submitted by the facility's consultant was approved by ODAFF on December 29, 2015. The submitted plan includes annual monitoring of groundwater parameters and reporting subsequent to monitoring that includes a full interpretation of results.

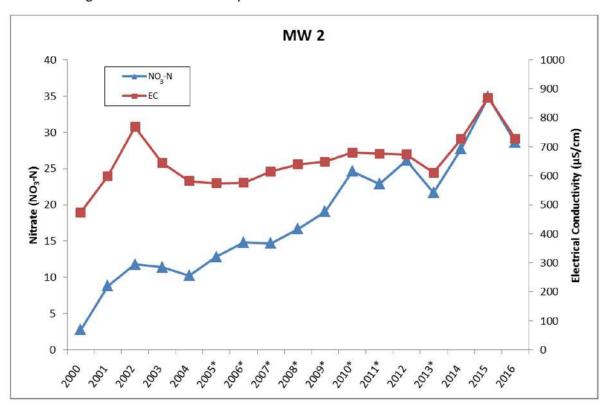


Figure 3. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 2, Hanor Major/Trails End BGF #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

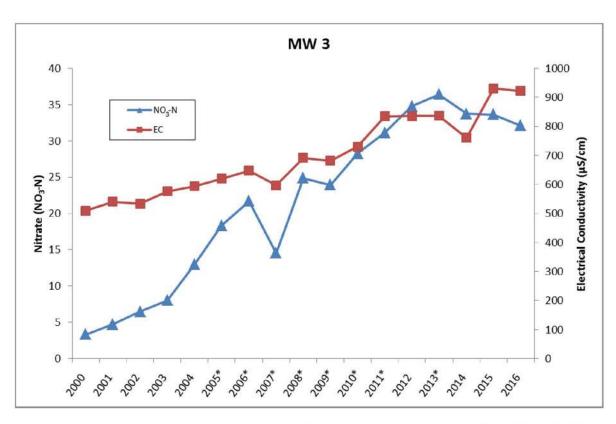


Figure 4. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 3, Hanor Major/Trails End BGF #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

MWs# 1 and 6: Major/Trails End BGF #1.

These wells were on the 2015 Table 12 and continue to be on the 2016 Table 12. ODAFF reviewed and responded to a request for supplemental monitoring based on the results of the August 31, 2015 report. A plan of action submitted by the facility's consultant was approved by ODAFF on December 29, 2015. The submitted plan includes annual monitoring of groundwater parameters and reporting subsequent to monitoring that includes a full interpretation of results and recommendations. The report is planned to be submitted following the first quarter of 2016. Further analyses will be determined following the submittal.

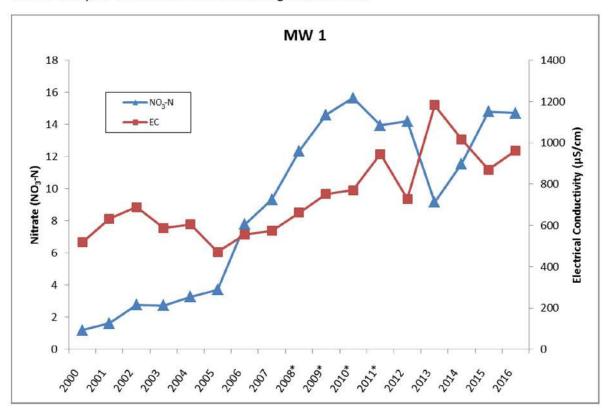


Figure 5. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 1, Hanor Major/Trails End BGF #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

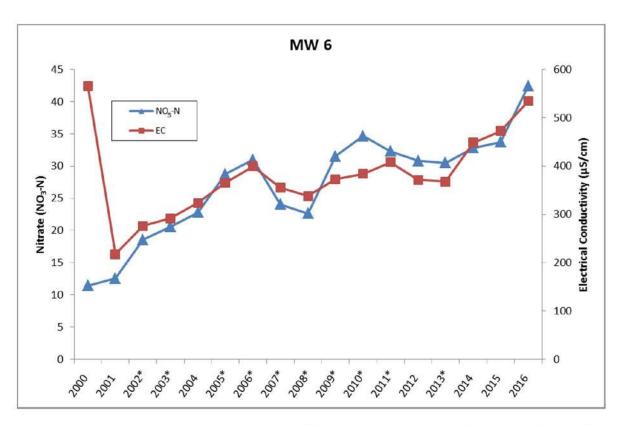


Figure 6. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 1, Hanor Major BGF #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

MWs# 7, 10, 11 and 12: Trails End BGF #1.

These wells were on the 2015 Table 12 and continue to be on the 2016 Table 12. On February 13, 2015, the consultant submitted a proposed groundwater assessment plan for Monitoring Wells #7, 10, 11 and 12 that included: 1) top of casing elevation survey and current groundwater elevations to determine current groundwater flow direction; 2) sample the monitoring wells and lagoons and develop Stiff and Tri-Linear diagrams to fingerprint groundwater; 3) perform isotope studies of monitoring wells; and 4) report findings to ODAFF. ODAFF approved this plan on March 6, 2015 and asked for additional items to be submitted: 1) description of groundwater sampling activities; 2) current map of groundwater flow; 3) tabulated analytical results and lab reports; 3) Tri-Linear and Stiff diagrams; and 4) recommendations for any additional actions based on results, to be received no later than August 31, 2015. ODAFF reviewed and responded to a request for supplemental monitoring based on the results of the August 31, 2015 report. A plan of action submitted by the facility's consultant was approved by ODAFF on December 29, 2015. The submitted plan includes annual monitoring of groundwater parameters and reporting subsequent to monitoring that includes a full interpretation of results.

Additional work on MW 12 was completed in the first quarter of 2016 as a supplemental investigation regarding elevated nitrate levels in at the location. The recommendation that no additional investigation was required was approved by ODAFF on April 14, 2016 and that annual monitoring with status reporting is to resume for this well.

On July 29, 2016, a report was submitted by the facility's consultant for MW 7, 10, 11 and 12. Based on evidence provided, the nitrate levels in both the upgradient (MW 12) and downgradient (MW 7, 10, 11) increased over the previous sampling year. An isotopic analysis of the monitoring wells revealed that MW 10, 11 and 12 had an animal waste source present, and MW 7 results indicated a commercial fertilizer source. Based on the additional investigation completed in April on the upgradient area of the retention structure that indicated elevated nitrate levels, no clear connection to the lagoon could be discerned for the downgradient wells. The consultant recommends that annual sampling resume and to continue monitoring groundwater flow direction. ODAFF agrees with this recommendation and will further evaluate the conditions to determine the present animal waste source at the facility.

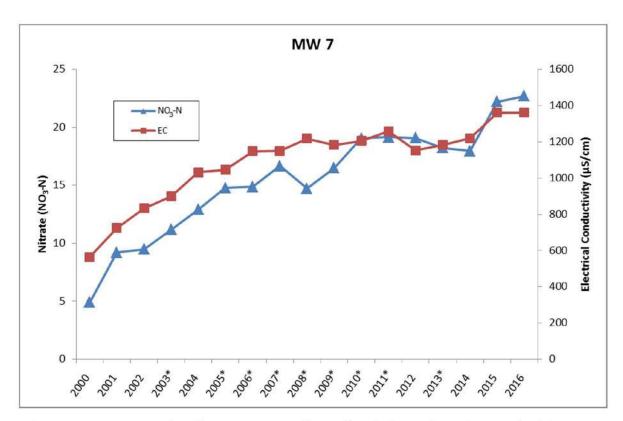


Figure 7. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 7, Hanor Trails End BGF #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

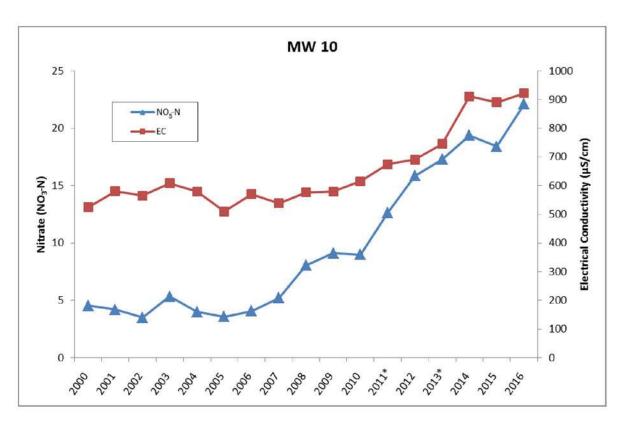


Figure 8. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 10, Hanor Trails End BGF #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

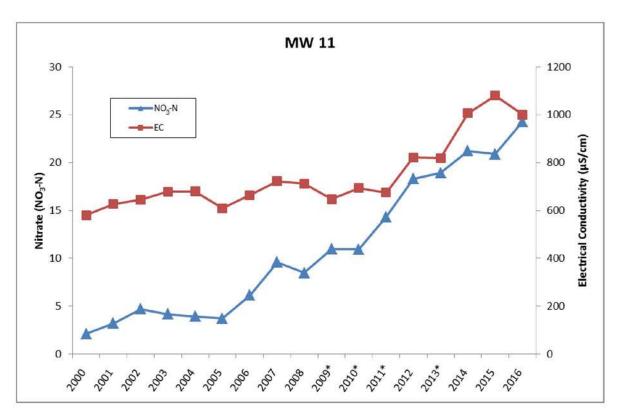


Figure 9. Time-series plot of nitrate-nitrogen (NO_3 -N) and electrical conductivity (EC) for MW 11, Hanor Major/Trails End BGF #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

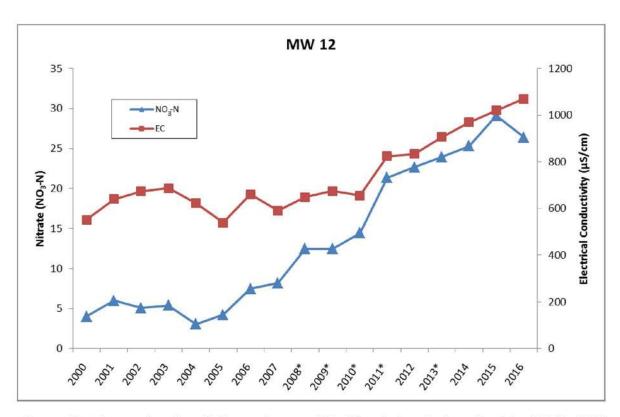


Figure 10. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 12, Hanor Major/Trails End BGF #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

MWs# 22 and 123: Roberts Ranch Finisher 2.

These wells were on the 2015 Table 12 and continue to be on the 2016 Table 12. On February 13, 2015, the consultant submitted a plan for proposed investigation activities for Monitoring Well #22 and 123. The facility proposed to: 1) complete a top of casing survey and record current groundwater elevations to determine groundwater flow direction; 2) perform a direct push groundwater investigation; 3) report the findings of the direct push study back to ODAFF and 4) continue monitoring MW #123, as it is concluded the nitrate in the well is from commercial fertilizer. ODAFF approved the plan by letter dated March 6, 2015 and requested results be submitted to ODAFF no later than August 31, 2015. The report submitted to ODAFF on August 31, 2015 indicated that no clear connection was determined between the groundwater and lagoon. A supplemental investigation was proposed that included direct-push borings to further investigate the increased nitrate trend, and a plan of action was submitted to ODAFF on November 18, 2015 and approved on December 29, 2015.

A report submitted by the consultant on July 29, 2016 indicated that nitrate conditions were increasing in the upgradient (MW 123) well and decreasing in the downgradient well (MW 22). Isotopic analysis indicates that no clear connection can be determined between the lagoon and the water collected from the monitoring wells. The consultant recommends that annual monitoring with reporting be continued to monitor the trends. ODAFF agrees and will further evaluate the conditions at the facility following the following year's sampling period.

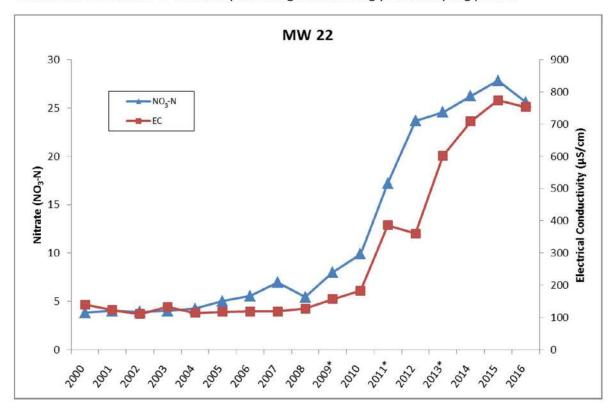


Figure 11. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 22, Hanor Roberts Ranch Finisher #2. Years denoted with an asterisk (*) represent mean values for the sampling year.

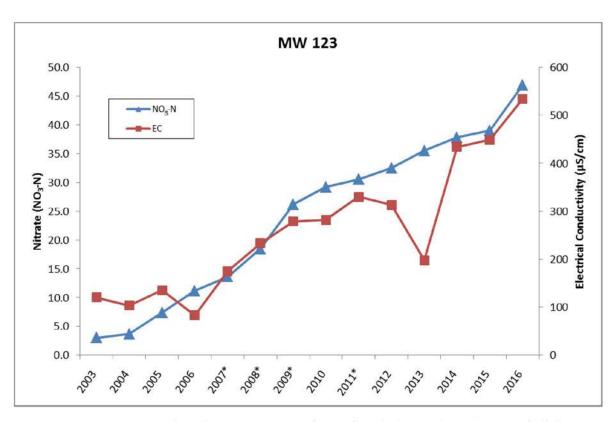
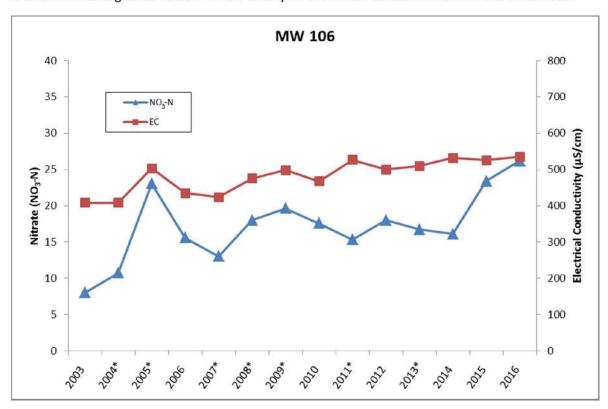



Figure 12. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 123, Hanor Roberts Ranch Finisher #2. Years denoted with an asterisk (*) represent mean values for the sampling year.

MW# 106: Roberts Ranch Finisher 4.

This well was on the 2015 Table 12 and continues to be on the 2016 Table 12. On February 13, 2015, the consultant submitted a plan for proposed investigation activities for Monitoring Well #106. The facility proposed to: 1) complete a top of casing survey and record current groundwater elevations and determine groundwater flow direction; 2) perform isotope studies and 3) report the findings to ODAFF. ODAFF approved the plan by letter dated March 6, 2015 and requested results be submitted to ODAFF no later than August 31, 2015 as well as submitting: 1) a description of groundwater sampling activities; 2) a current map of groundwater flow direction; 3) tabulated analytical results and lab reports; 4) Stiff and Tri-Linear diagrams; and 5) recommendations for any additional activities. Based on the conclusions of the reports submitted, ODAFF was in agreement with the consultant's recommendation to resume annual monitoring on this well to commence in the first quarter of 2016.

On July 29, 2016 a report was submitted by the consultant to further evaluate the conditions at the lagoon regarding MW 106. Conclusions indicate that no correlation was found between the groundwater and lagoon from a fingerprinting and isotopic analysis. Furthermore, the historical comparison of nitrate levels indicates that background nitrate levels have been elevated since the commencement of the monitoring period. ODAFF agrees with the consultant that continued annual monitoring is warranted for the facility to document the current trends and conditions.

Figure 13. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 106, Hanor Roberts Ranch Finisher #4. Years denoted with an asterisk (*) represent mean values for the sampling year.

MW# 83: Roberts Ranch Finisher 5.

On February 13, 2015, the consultant submitted a plan for proposed investigation activities for Monitoring Wells #83. The facility proposed to: 1) record current groundwater elevations to determine a groundwater flow pattern; 2) complete the delineation of the groundwater plume to the south; and 3) report the findings to ODAFF. Results from the report submitted by the consultant on August 31, 2015 indicate that there is no clear impact from the facility on the nearby groundwater. An annual sampling schedule was recommended and approved by ODAFF on December 29, 2015 with monitoring status reports to be submitted within 45 days of the sampling events. Further evaluations will be determined based on these results.

On July 29, 2016 a report was submitted by the consultant to further evaluate the conditions at the lagoon regarding MW 83. Fingerprinting and isotopic analyses were used in an attempt to determine conditions at the facility. Conclusions from the consultant indicate that no connection to groundwater was determined and that the source of increased nitrate was commercial fertilizer. Given that MW 83 is directly downgradient from the lagoon, and the recent increasing trend over the past three sampling periods, ODAFF suggests that an additional investigation is needed to further evaluate the source of the significant increase in nitrate levels in MW 83. Further actions are pending based on the upcoming sampling event(s).

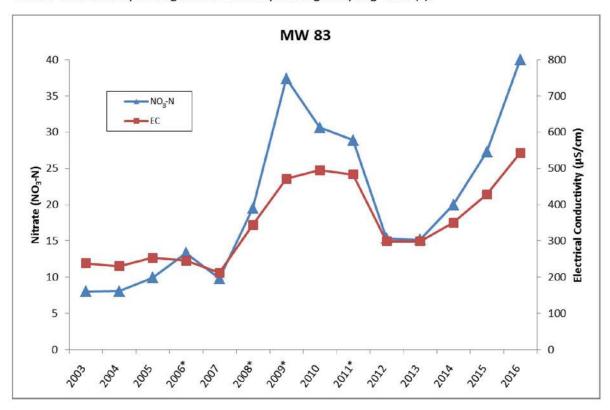


Figure 14. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 83, Hanor Roberts Ranch Finisher #5. Years denoted with an asterisk (*) represent mean values for the sampling year.

MW# 115: Roberts Ranch Finisher 8.

This well was new to the 2015 Table 12 and remains listed on the 2016 Table 12. On November 18, 2015 a plan of action was submitted by the consultant for first quarter 2016 sampling of this well that includes comprehensive analysis for major cations and anions, and completion of a report including recommendations. This report is pending submittal for 2016 and further analyses and investigations will be determined following review.

On July 29, 2016 a report was submitted by the consultant to further evaluate the conditions at the lagoon regarding MW 115. Based on the conclusions indicated in the report, no additional evaluations beyond annual monitoring were indicated. The last sample collected by OWRB and ODAFF on November 3, 2015 was 68.2 mg/L and the sample collected by the consultant on March 22, 2016 was 8 mg/L, showing a significant decrease at this well. ODAFF agrees with the recommendation of annual monitoring to document recent trends.

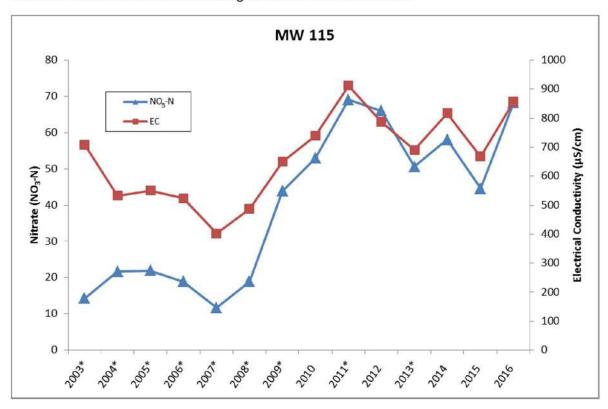


Figure 15. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 115, Hanor Roberts Ranch Finisher #8. Years denoted with an asterisk (*) represent mean values for the sampling year.

MWs 60 and 90: Roberts Ranch Nursery 1.

These wells were on the 2015 Table 12 and continue to be on the 2016 Table 12. On February 13, 2015, the consultant submitted a plan for proposed investigation activities for Monitoring Wells #60 and 90. The facility proposed to: 1) record current groundwater elevations to determine a groundwater flow pattern; 2) perform an isotope study; and 3) report the findings to ODAFF. Following a report submitted on August 31, 2015 and approval by ODAFF of the November 18, 2015 plan of action, the facility is scheduled to resume annual monitoring and no impacts were determined from the facility at these locations.

On July 29, 2016 a report was submitted by the consultant to further evaluate the conditions at the lagoon regarding MW's 60 and 90. Continued annual monitoring was recommended at the site due to isotopic and geochemical analysis showing no correlation to animal waste signatures. The consultant indicated that the increase in nitrates at MW-60 is most likely due to application of commercial fertilizer. Further evaluations will be made following the next sampling period.

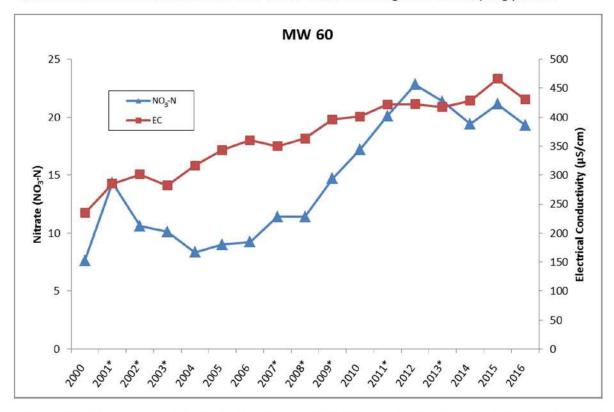


Figure 16. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 60, Hanor Roberts Ranch Nursery #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

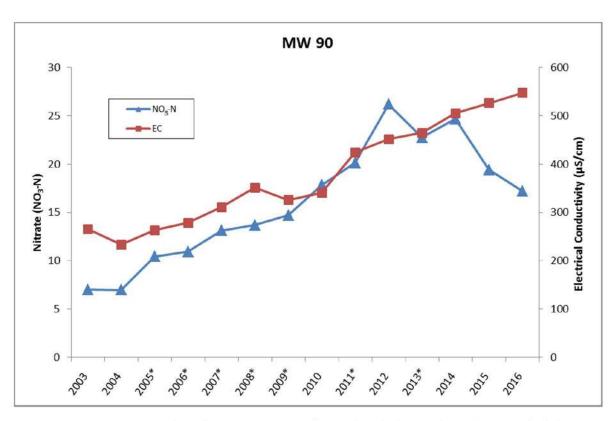


Figure 17. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 90, Hanor Roberts Ranch Nursery #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

MW# 80: Roberts Ranch Nursery 8.

This well was on the 2015 Table 12 and continues to be on the 2016 Table 12. On February 13, 2015, the consultant submitted a proposed plan for investigation on this well. The facility proposed to 1) complete a top of casing elevation survey and record current groundwater elevations and determine groundwater flow direction; and 2) report findings to ODAFF. ODAFF approved the plan on March 6, 2015 and requested the report be submitted no later than August 31, 2015 with these additional items: 1) a current map depicting groundwater flow and 2) recommendations for any actions based on results. Following a report submitted on August 31, 2015 and approval by ODAFF of the November 18, 2015 plan of action, the facility is scheduled to resume annual monitoring and no impacts were determined from the facility at these locations.

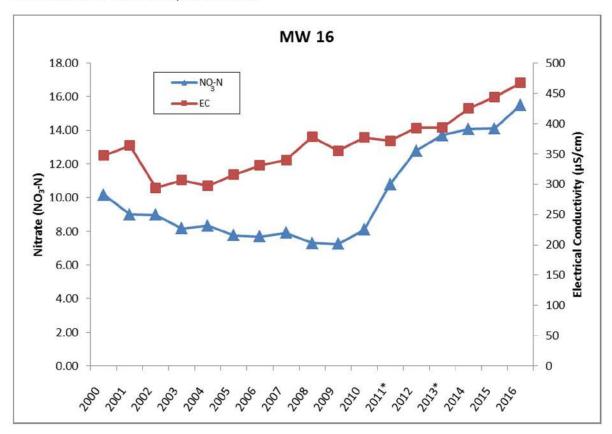

On July 29, 2016 a report was submitted by the consultant to further evaluate the conditions at the lagoon regarding MW 80. The consultant concluded that based on a fingerprinting analysis and groundwater characteristics that there is no relation to indicate a connection between the groundwater and lagoon. The isotope analysis suggested the increasing trend was due to commercial fertilizer. ODAFF agrees with this recommendation and to continue annual monitoring for future determinations.

Figure 18. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 80, Hanor Roberts Ranch Nursery #8. Years denoted with an asterisk (*) represent mean values for the sampling year.

New additions to the Hanor facilities for the 2016 Table 12 include:

Figure 19. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 16, Hanor Huffman G/F Sites 25-28. Years denoted with an asterisk (*) represent mean values for the sampling year.

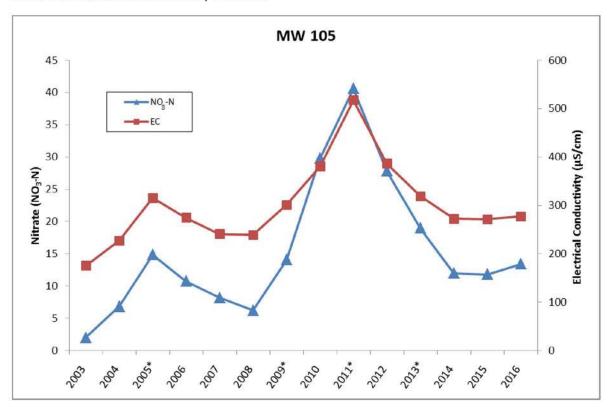


Figure 20. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 105, Hanor Roberts Ranch, Finisher 4. Years denoted with an asterisk (*) represent mean values for the sampling year.

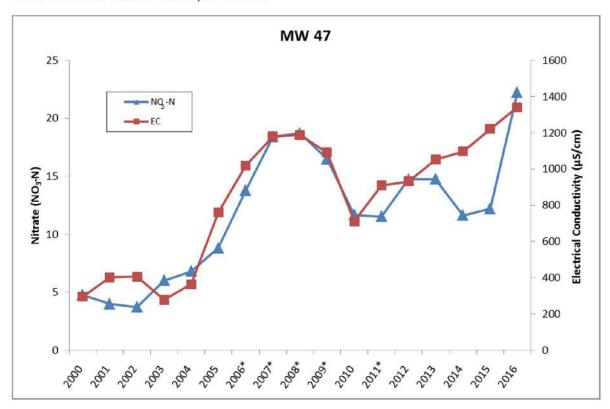


Figure 21. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 47, Hanor Roberts Ranch, Finisher 10. Years denoted with an asterisk (*) represent mean values for the sampling year.

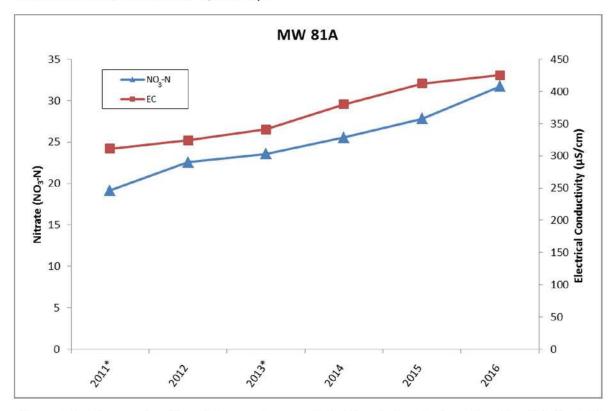


Figure 22. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 81A, Hanor Roberts Ranch, Nursery 8. Years denoted with an asterisk (*) represent mean values for the sampling year.

HITCH ENTERPRISES

MW# 91: Hitch Enterprises Nursery Sites 5-8.

- Monitoring well #91 of the Hitch Enterprises Nursery 6 facility was added to the Table 7 of the 2011 report and to the 2013 report. ODAFF required Hitch Enterprises to conduct fingerprinting analysis on MW #91 and additional monitoring wells in the area for comparison purposes.
- 2. In 2013, the N-15 isotope fingerprinting of Hitch Enterprises Nursery 6 MW #91 showed that the increase in nitrate is not from the waste retention structure.

Currently, following repair of a line and current monitoring, ODAFF approved that no further actions were required for monitoring as of October 27, 2015. Any additional actions are pending future annual sampling events.

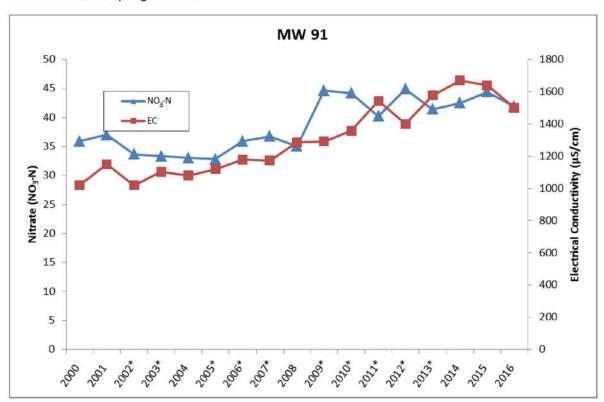


Figure 23. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 91, Hitch Enterprises Nursery Sites #5-8. Years denoted with an asterisk (*) represent mean values for the sampling year.

L&M FARMS TRUST

MW# 3: This well is new to the 2016 Table 12. Letter dated December 30, 2014 requested an action plan be submitted based on groundwater conditions at the facility. An action plan dated April 7, 2015 submitted to ODAFF included a plan that indicates MW 3 and all wells will be sampled over a 5 year time period. Sampling is scheduled on an annual basis with a final report scheduled to be due by 11/30/2018. If any significant increases in nitrate are indicated above historical concentrations, additional investigations may be initiated to determine and trace the source of nitrate. Note that no data was collected for 2001, 2013 or 2015 due to dry well.

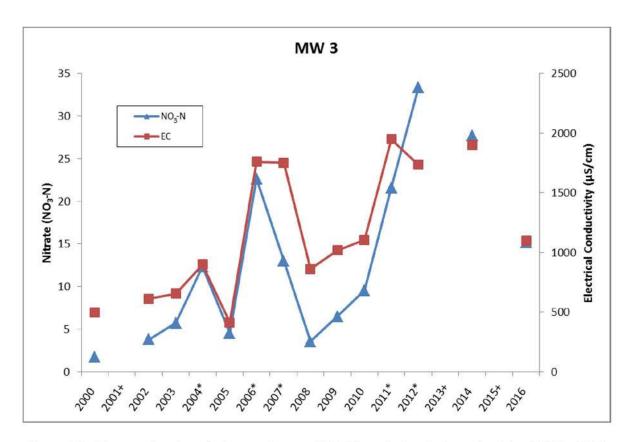


Figure 24. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 3, L&M Farms Trust. Years denoted with an asterisk (*) represent mean values for the sampling year. Years denoted with (+) indicate no sample recorded.

LUTHI FARMS

Luthi Farms has only MW# 1 on the 2016 Table 12 and was also listed on the 2015 Table 12.

Sampling results in late 2009 and early 2010 displayed an increase in nitrate-N and EC in monitoring wells #1 and #2 at the Luthi Farms facility. The ODAFF required actions be taken in 2010 - 2013. To date Luthi Farms has performed the following actions to address the increase in nitrate-N and EC at this facility:

- 1. Sampled MW #1, MW #2, MW #3, the office septic system, and the waste retention structure with laboratory analysis of all major ions.
- 2. Utilized laboratory analysis to conduct fingerprinting via Stiff and Tri-linear diagrams.
- 3. Located and repaired leaking underground infrastructure associated with land application.
- 4. Removing approximately 4000 gallons of water per month from MW #1.
- 5. Quarterly sampling of MW #1 and MW #2 with laboratory analysis of all major ions.

The actions taken by Luthi Farms and their consultant Ensol appear to have been very effective at lowering the nitrate-N and EC levels in MW #1 and MW #2. The nitrate-N concentration of MW #1 has decreased overall from a high of 99.5 mg/L in October 2010 to 37.4 mg/L in March 2012 and 33.5 mg/L on March 18, 2013. This is an overall reduction of approximately 62%. Similarly, EC has decreased approximately 30% from a high of 1573 µmhos/cm in October 2010. Similarly, the actions taken by Luthi have caused the decrease in nitrate-N and EC levels in MW #2 to the point where MW #2 is not listed on Table 7 of the 2012 report and 2013 report. Luthi Farms continued quarterly sampling into 2013.

MW# 1: Liner inspections revealed a 2 inch tear and a broken weld in the secondary lagoon. These two items were required to be corrected by September 1, 2013, and were completed in August 2013. Consultant for Luthi Farms recommended in an April 1, 2013 plan, to continue quarterly sampling for MW# 1 and to continue to monitor for any leakage when pumping effluent through a new above ground connection. This plan was approved by ODAFF on April 8, 2013 and quarterly sampling continues into 2014. The first quarterly sampling was performed in September 2013 and results and recommendations from Luthi Farms were sent to ODAFF on September 20, 2013. ODAFF approved the plan on September 25, 2013 for the monitoring the pumping of MW# 1 into the WRS and quarterly sampling scheduled for December 2013.

On December 13, 2013, Luthi Farms submitted test results and recommendations for MW# 1. They will continue to monitor the pumping from MW# 1 into the WRS and perform quarterly sampling in March 2014. This was approved by ODAFF on December 24, 2013.

Quarterly sampling was conducted in March 2014. The test results for MW# 1 and plan for MW# 1 was received by ODAFF on March 19, 2014. Nitrate levels in MW# 1 were showing a decrease with latest results of 20.4 mg/L from a high of 48.6 mg/L. On March 25, 2014 ODAFF approved the next quarterly sampling scheduled for June 2014. The June sampling event for MW# 1 was 23 mg/L NO₃.

A letter from ODAFF dated August 11, 2014 approved the June 26, 2014 test results for MW #1 and plans to continue monitoring well. In a letter from facility dated July 3, 2014, the facility

plans to: 1) purge well #1 into lagoon #2, 2) test it for nitrates; and 3) continue quarterly sampling. A letter report dated October 18, 2014 contained sample results from the October 8, 2014 sampling event and a letter December 24, 2014 included sample results from the December 17, 2014 sampling.

An email from the facility on March 31, 2015 included the sample results from the March 23, 2015 sampling event and plan for MW #1: 1) Install new check valve assemble with leather once the replacement parts arrive; 2) Continue to monitor the pumping from MW #1 into Lagoon #2 as well as pumping of effluent from Lagoon #2; and 3) Continue with quarterly sampling with the next sample to be collected at the end of June, 2015.

An email from the facility on July 20, 2015 explained that the June 2015 sampling event was postponed to July 27, 2015 due to a family emergency. ODAFF responded by email on the same day, approving the new sampling date and established a deadline of August 14, 2015 for a report on sample results. The facility remains on a quarterly sampling schedule and no additional actions have been requested by ODAFF as of July 2016.

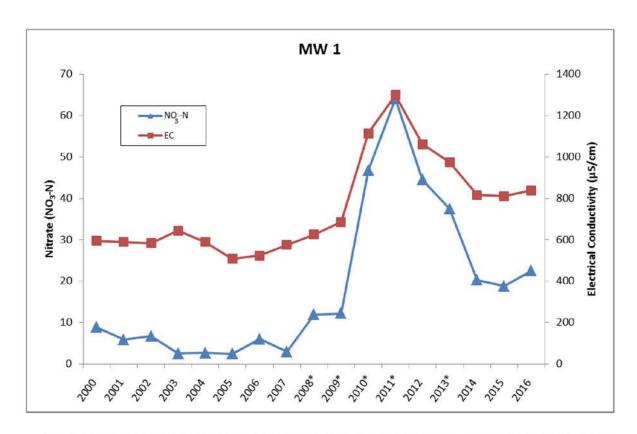


Figure 25. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 1, Luthi Farms, Sow #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

MURPHY BROWN

Murphy Farms submitted a June 8, 2007 Plan to ODAFF to ascertain if ground water resources near monitoring well numbers 1, 29, 37, 38, 57 and 409 were being subject to any degradation as a result of the waste management practices being utilized. For all of the monitoring wells listed above, Murphy Farms have submitted to ODAFF the following:

- 1. Groundwater gradient information.
- 2. Land application fields distances from MWs.
- 3. MW pad conditions and surface seals and settlement status around the MW pads.
- 4. Additional monitoring well results.
- 5. Soil sample lab results.
- 6. Evaluation of fresh water analysis for three years.
- 7. Evaluation of monitoring well completion records.
- 8. Comparison of water depth information to nitrate and conductivity levels

Additional actions are noted with each facility and corresponding monitoring well(s).

Plum Thicket Nursery #1:

MW# 29: Was listed on the 2015 Table 12 and continues to be listed on the 2016 Table 12.

ODAFF requested on October 27, 2015 that the facility provide a report that recommends additional actions (if any) that need to address the increased nitrate levels at this well location. A consultant provided a report on December 2, 2015 that recommended no additional action was needed beyond annual sampling based on the 2012 study that was completed that showed no correlation between the groundwater and lagoon. ODAFF approved this plan in July of 2016 and is continuing to assess the annual well results if additional actions are necessary.

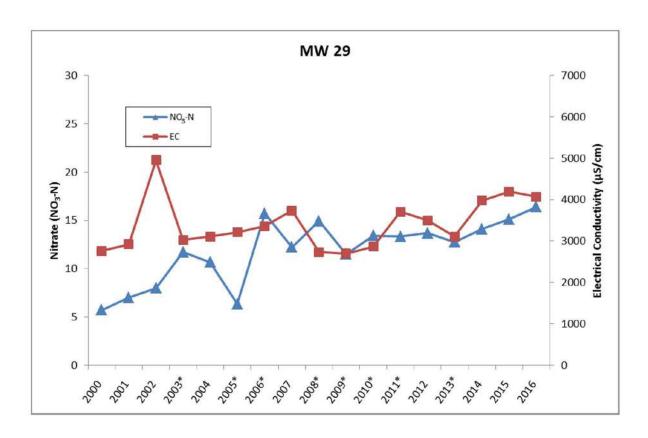


Figure 24. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 29, Murphy Brown Farms, Plum Thicket Nursery #3. Years denoted with an asterisk (*) represent mean values for the sampling year.

Plum Thicket Nursery 4:

MW# 37: This well is new to the 2016 Table 12.

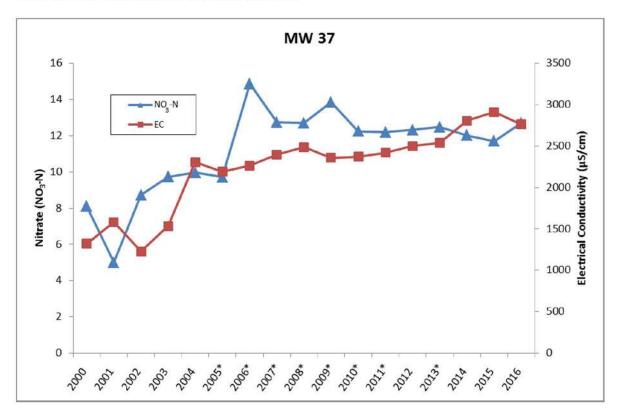


Figure 25. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 37, Murphy Brown Farms, Plum Thicket Nursery #4. Years denoted with an asterisk (*) represent mean values for the sampling year.

Plum Thicket Finisher 2:

- Bore holes drilled and groundwater samples taken to delineate the vertical and horizontal extent of any possible contamination for MFF Plum Thicket Nurseries and MW#s 34, 37 and 38.
- 2. Installed three new MW#s 4, 5 and 6 in the locations approved by ODAFF near MW #38.
- 3. Electronic leak detection method utilized on primary and secondary WRSs.
- 4. Holes in liner of primary and secondary WRSs repaired.
- Submitted plan to determine whether or not MNA is appropriate at this facility.
 Plan involved quarterly sampling for one year to determine whether conditions conducive for MNA exist and to monitor plume migration.

MW# 53: This well (and other wells) was listed as new on the 2013 Table 7. On August 30, 2013, consultants for Murphy Brown sent a plan to address the increasing nitrates in this well and MWs# 37 and 57. For MW#37, sampling data and an evaluation of MNA would be provided in a report by October 4, 2013. For MW# 53, samples would be collected quarterly, to June 2014, with an evaluation of land application of waste, and a report summarizing the sample data and fingerprinting via Stiff and Trilinear diagrams would be submitted to ODAFF within 30 days. There appeared to be no correlation between MW# 57 and the adjacent WRS and they proposed no further action for this well. For MW# 57, nitrate concentrations were decreasing (to 17.41 mg/L from OWRB sampling) and the EC was less than a 25% increase, thus not meeting ODAFF criteria for the 2014 Table 13 and was removed.

On September 16, 2013, ODAFF approved the plan submitted by the consultants. The report for MW# 53 was due July 15, 2014. On March 10, 2014, the consultant reported the results of three consecutive quarters of groundwater and WRS samples for MW# 53. The report concludes that nitrates were trending downward to below 10 mg/L and there is no correlation between the groundwater of MW# 53 and the WRS and proposed no further action at this time unless nitrates again increase. ODAFF agreed with the findings by March 19, 2014 letter.

For MW# 37, the source of nitrates seemed to correlate with commercial fertilizer and the consultant collected samples for ¹⁵N isotope analysis (in addition to other wells not subject of this report). ODAFF approved the report and proposed a modified scope of ¹⁵N analysis on January 7, 2014, with results to be reported by June 1, 2014. On March 24, 2014, the consultant reported that MW# 37's source of nitrate was commercial fertilizer and not WRS seepage, based on ¹⁵N isotope analysis. On April 23, 2014, ODAFF responded and agreed that no further action was required, unless future sampling events result in significant increases in nitrate.

For the 2014 Table 13, MW# 37 at Nursery #4 and MW# 57 at Finisher #4, which were both new to Table 7 in 2013, showed no further action was required and also did not meet the ODAFF criteria for placement on this year's table and were deleted.

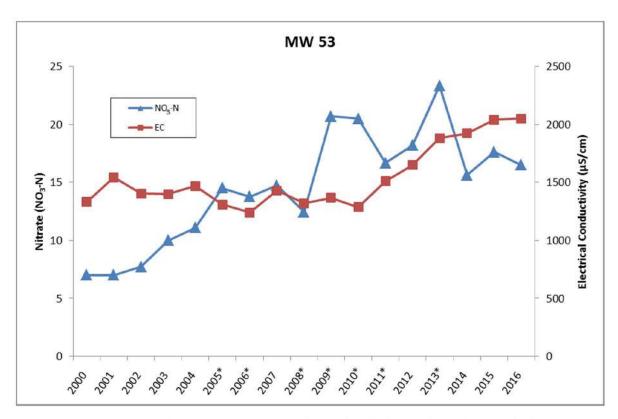


Figure 26. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 53, Murphy Brown Farms, Plum Thicket Finisher #2. Years denoted with an asterisk (*) represent mean values for the sampling year.

Trahern:

MW# 409: This well still meets the ODAFF criteria for placement on the 2016 Table 12 and was previously on the 2015 Table 12.

On February 2, 2015, consultant submitted a groundwater assessment plan to ODAFF. ODAFF approved the plan in a letter dated February 6, 2015 for quarterly sampling in 2015 for the first three quarters and requested the final report be submitted no later than November 13, 2015 and is to include all analytical data, results of quarterly sampling events, diagrams and recommendations for futher action. Quarterly reports have been submitted by the consultant on March 20, 2015 and July 13, 2015. A final report by the consultant on November 30, 2015 proposed that no further sampling of MW-409, other than annual monitoring, was necessary at the present conditions. In addition, the consultant proposed that depth to groundwater measurements be conducted for four quarters to better assess groundwater flow direction. ODAFF agrees with both of these recommendations and no further actions are required at this time.

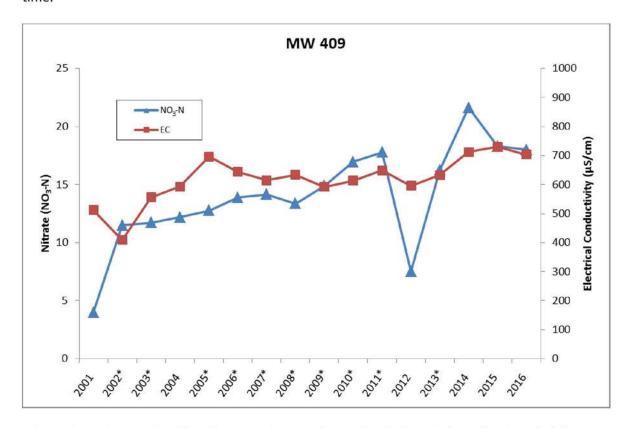


Figure 27. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 409, Murphy Brown Farms, Trahern. Years denoted with an asterisk (*) represent mean values for the sampling year.

Tumbleweed-Sagebrush:

MW# 60: The well was listed on the 2015 Table 12 and still meets the criteria for placement on the 2016 Table 12.

The pump unit that was leaking liquid that may have impacted MW# 60 was repaired in 2012 and is being monitored to ensure there will be no more leaks. The 2013 Table 7 lists new monitoring wells that were not on the 2012 Table 7 list. In May 2013, ODAFF sent letters to these LMFOs. The letters required a plan that included additional sampling, assessments and evaluations of the increasing nitrates. This plan is to be submitted to ODAFF for consideration by September 1, 2013.

Based on recent conditions at the facility further evaluations and an additional investigation are recommended to determine the significant increase nitrate levels downgradient from the lagoon. Further decisions will be made based on upcoming reports and analyses from the facility's consultant(s).

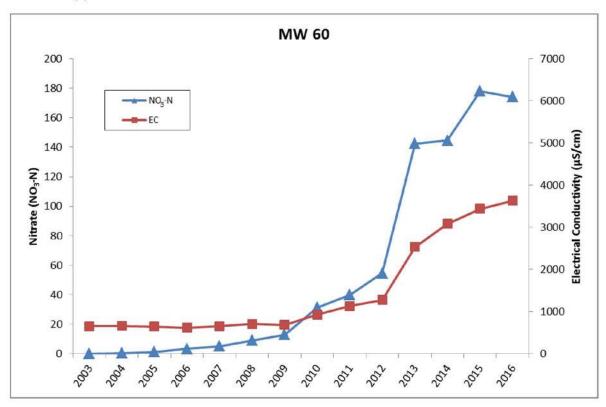


Figure 28. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 60, Tumbleweed-Sagebrush. Years denoted with an asterisk (*) represent mean values for the sampling year.

SEABOARD FOODS, LLC

Seaboard Monitoring Wells on the 2016 Table 12: Fairview Finisher 5-8 – MW #'s 28, 30 and 32 Fairview Sow 2 – MW# 39; Nichols-Radcliff Nursery 137 – MW #254; Stewart and Payne Finisher 1 – MW#'s 19, Finisher 2 – MW #'s 22 and 24, Finisher 3--- MW #'s 10 and 12, and Finisher 4 --- MW #16 and Watson Finisher 242 MW#'s 580-04 and 580-07.

Seaboard Foods, LLC has submitted plans and summaries of actions completed and steps taken for additional investigations to evaluate the source of elevated nitrates and electrical conductivity in the monitoring wells.

Their actions have included the following:

- 1. Groundwater assessments and gradients.
- 2. Installation of new additional monitoring wells.
- Additional groundwater monitoring, sampling and lab analysis for major ions, ammonia- nitrogen, nitrate-nitrogen and fecal coli form.
- 4. Conducted groundwater elevation assessments.
- 5. Lab analyses were plotted on Stiff and Tri-linear diagrams to evaluate correlations between lagoons and groundwater and monitoring wells chemistry.
- Closed a secondary lagoon.
- 7. N-15 isotope testing.
- 8. Fingerprinting of lab results from monitoring wells and associated lagoons.
- 9. Conducted direct push technology (DPT) groundwater investigations.

Seaboard's on-going actions include, but are not limited to, the following:

Seaboard Fairview Finisher 6:

MW# 28 (3500-05): Monitoring Well #28 was listed on 2015 Table 12 and continues to be listed on the 2016 Table 12.

On July 2, 2013, the consultant sent a letter of summary and recommendation to ODAFF for this facility. Seaboard proposed to continue to evaluate the facility over a three year period with sampling conducted on a semi-annual basis. In the last year, samples would be analyzed for major ions to update the Stiff and Trilinear diagrams and for ¹⁵N signature. An updated report would be sent to ODAFF at the conclusion of the three year period. If nitrate levels are stable or declining, then normal monitoring practices would resume. ODAFF approved this plan by letter on July 8, 2013.

For MW #28, a letter from the facility to ODAFF, dated February 11, 2015, was in response to a letter from ODAFF dated December 30, 2014, asking for a groundwater investigation plan. The facility letter stated that this well was already under an ODAFF-approved investigation plan which includes a three year semi-annual monitoring schedule. The facility planned to distinguish potential sources with the three years of groundwater sampling and evaluation of groundwater conditions beginning July 2013. In a response letter dated March 3, 2015, ODAFF requested the final report be submitted no later than March 30, 2016. A report dated May 30, 2016 was submitted by the consultants to ODAFF, where the conclusions for the facility indicated that no leakage was detected from the waste retention structure. ODAFF agreed to this recommendation and approved annual monitoring with an annual report letter to review conditions.

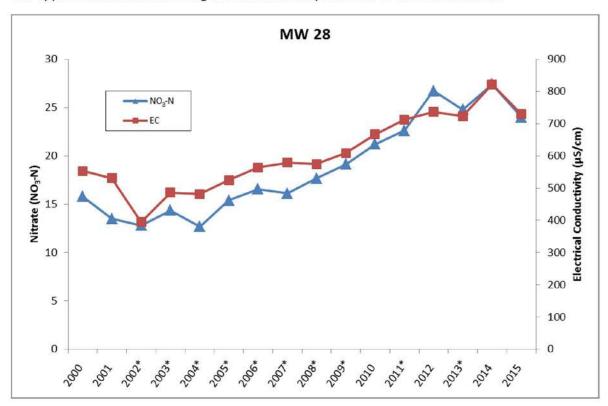


Figure 29. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 28, Seaboard Fairview Finisher #6. Years denoted with an asterisk (*) represent mean values for the sampling year.

Seaboard Fairview Finisher 7:

MWs# 30 and 32: These wells were on the 2015 Table 12 and are still included 2016 Table 12.

A letter from ODAFF on October 27, 2015 was sent to the facility indicating that both wells were included in the 2015 LMFO monitoring well report due to an increase in nitrate concentrations and electrical conductivity readings for the 2014-2015 sampling period. On February 9, 2016 a consultant provided a proposed plan of action that included performing an elevation survey, analyzing groundwater for cations and anions, analyzing WRS effluent, and developing stiff and trilinear diagrams to compare and assess the source of the increased nitrates and EC. ODAFF approved this plan of action on February 18, 2016 with a due date of August 1, 2016. The report dated August 1, 2016 from the consultant indicates that based on groundwater elevation data and isotopic and geochemical analyses, there may be evidence for an effluent source. Therefore, the consultant suggested that a more detailed investigation through use of direct-push sampling is warranted around the retention structure. The results from the additional sampling event are expected to be completed by the end of 2016/early 2017.

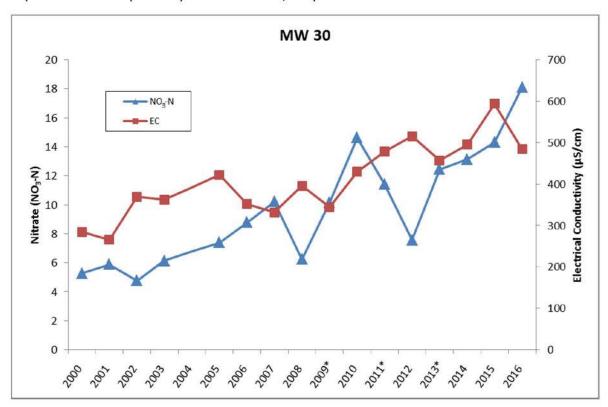


Figure 30. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 30, Seaboard Fairview Finisher #7. Years denoted with an asterisk (*) represent mean values for the sampling year.

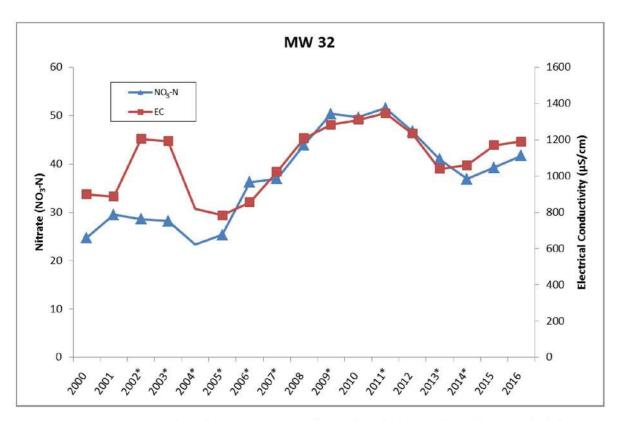


Figure 31. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 32, Seaboard Fairview Finisher #7. Years denoted with an asterisk (*) represent mean values for the sampling year.

Seaboard Fairview Sow #2:

MW# 39: MW# 39 appeared on the 2015 Table 12 because it meets the ODAFF criteria for placement on the table and still has placement on the 2016 Table 12.

On May 21, 2013, ODAFF requested that Seaboard submit a groundwater investigation plan for this well because of high nitrates and EC. The consultant submitted a proposed plan to ODAFF on August 13, 2013. This well is cross-gradient of the WRS and downgradient of the barns and land application area. Test results from ¹⁵N isotope analysis were inconclusive and suggest the source of nitrates is not animal source. Seaboard suggested that routine annual monitoring be resumed. ODAFF concurred in a letter dated September 3, 2013 that no additional actions were required and annual routine sampling would continue. ODAFF sent a letter to the facility on October 27, 2015 indicating that based on the historical investigations and trends that no further monitoring was required of the facility beyond annual sampling of the well.

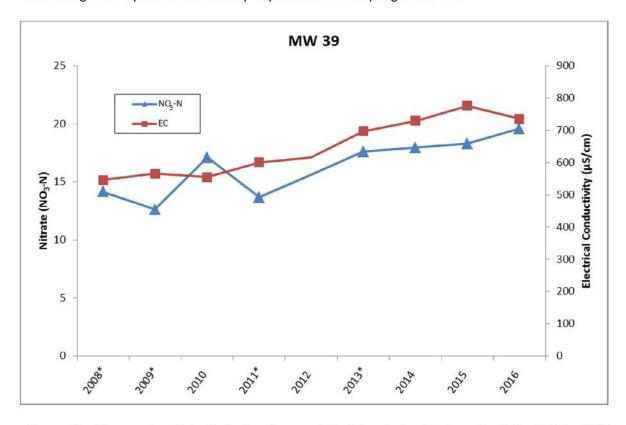


Figure 32. Time-series plot of nitrate-nitrogen (NO_3 -N) and electrical conductivity (EC) for MW 39, Seaboard Fairview Sow #2. Years denoted with an asterisk (*) represent mean values for the sampling year.

Seaboard Nichols-Radcliff:

MW# 254: This well is listed as new on the 2015 Table 12 because it meets the ODAFF criteria for placement on the table. It continues to be placed on the 2016 Table 12.

On March 25, 2013, the consultant for this facility submitted a groundwater assessment report to ODAFF. It stated that the local groundwater gradient was to the northwest, and proposed that this gradient was being influenced by nearby high-volume irrigation wells and that it was unlikely that the elevated high nitrates in this well were from the WRS or any other farm operation infrastructure. They recommended a return to normal annual monitoring.

On April 9, 2013 ODAFF approved the recommendation but requested that the irrigation wells be confirmed and to measure the water level in the monitoring wells to establish the groundwater gradient during the next sampling event. On June 12, 2013, Seaboard verified the existence and location of the irrigation wells north and northwest of the facility in a letter to ODAFF.

OWRB provided to Seaboard the latest water level measurements of the monitoring wells on April 23, 2014. The measurements confirmed a groundwater gradient to the northwest. A report dated July 2, 2014 summarized these results from the investigation and Seaboard recommended a return to routine annual monitoring. ODAFF responded by agreeing with the findings and concurring that annual monitoring would be resumed.

ODAFF sent a letter to the facility on October 27, 2015 indicating that based on the historical investigations and trends that no further monitoring was required of the facility beyond annual sampling of the well.

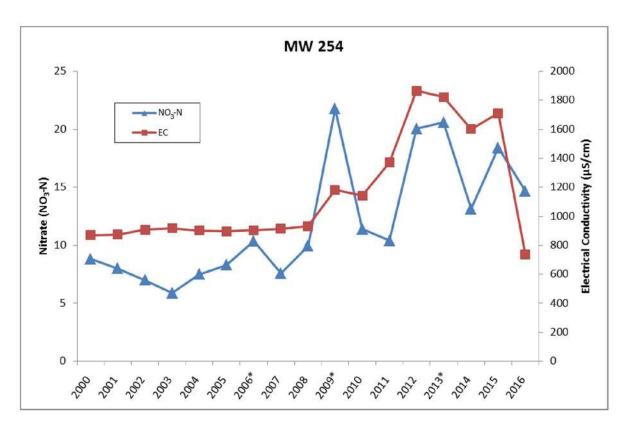


Figure 33. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 254, Seaboard Nichols-Radcliff. Years denoted with an asterisk (*) represent mean values for the sampling year.

Seaboard Stewart and Payne Finisher #1:

MW# 19: This well was listed on the 2015 Table 12 and continues to be listed on the 2016 Table 12 since it meets the ODAFF criteria for placement on the table.

 Land application practices were changed by using a lower volatilization factor in agronomic rate calculations resulting in less animal waste applied.

Status: On-going evaluation.

A letter from the consultant dated February 11, 2015 included a proposed groundwater investigation that included: 1) completion of a top of casing elevation survey of monitoring wells; 2) measure depth to groundwater; 3) analyze groundwater for Na, Mg, Ca, K, B, Cl, NH₄-N, SO₄, CO₃, HCO₃, TSS, EC, SAR, P and stable isotopes of nitrogen; 4) analyze the waste retention structure effluent for nitrate, Na, Mg, Ca, K, B, Cl, NH₄-N, SO₄, CO₃, HCO₃, TSS, EC, SAR and P; and 5) develop ST diagrams to assess correlation between effluent and groundwater chemistry. ODAFF agreed to this proposal in a letter dated March 3, 2015 and requested that by August 31, 2015, Seaboard will submit a report that includes: 1) a description of groundwater sampling activities; 2) tabulated analytical results and lab reports; 3) ST diagrams; and 4) recommendations of additional actions based on results.

The facility's consultant submitted a report to ODAFF on August 31, 2015 that recommended no additional actions were required due to no evidence of increasing nitrate conditions at the farm. In addition, the consultant indicated that this well was an upgradient well and therefore the increase in nitrate concentrations was due to current or previous waste management practices upland of the farm. ODAFF approved this recommendation on September 25, 2015 with the addition of requesting that the facility install a new monitoring well downgradient of the lagoon since only one well was present directly downgradient. A new well was installed in the first quarter of 2016 and has been established as the new true downgradient well and is included in the upcoming annual sampling events for the facility. Baseline data was collected following completion of the well.

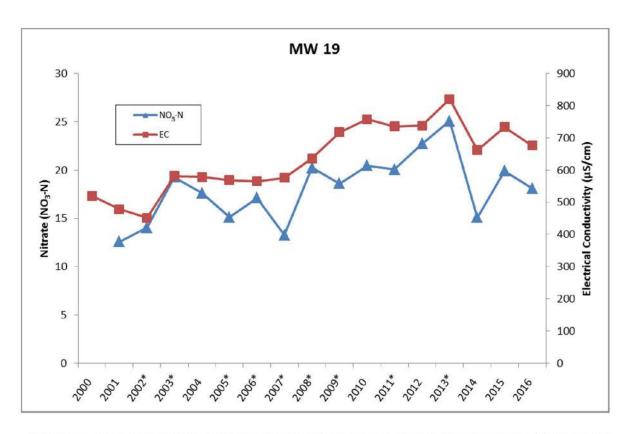


Figure 34. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 19, Seaboard Stewart and Payne Finisher #1. Years denoted with an asterisk (*) represent mean values for the sampling year.

Seaboard Stewart and Payne Finisher #2:

MWs# 22 and 24: These wells were listed on the 2015 Table 12 and continue to be listed on the 2016 Table 12 as they continue to meet the ODAFF criteria for placement on the table.

- Installation of two new monitoring wells in the fall of 2011 at the NW and SE corners of the WRS.
- 2. A DPT investigation of the land application area was conducted in Summer 2012.
- 3. Used a lower volatilization factor in agronomic waste calculation so less animal waste was land applied.

The 2013 Table 7 lists new monitoring wells that were not on the 2012 Table 7 list. In May 2013, ODAFF sent letters to these LMFOs. The letters required a plan that included additional sampling, assessments and evaluations of the increasing nitrates. This plan was submitted to ODAFF for consideration by September 1, 2013.

These wells are already subject of an active groundwater investigation and evaluation dating back to 2012. Well #23 was listed as new on the 2013 Table 7. A report dated October 2, 2012 from the consultant summarized the assessment that utilized drilling 19 boreholes using Direct Push technology in the land application areas. Sources of high nitrate may be from land application area, as there is a similarity between the Trilinear and Stiff diagrams between monitoring wells and land application area samples. A plume of elevated nitrates from the land application area is migrating toward the barn and WRS and the leading edge of the plume is moving through the well system.

It is hoped that the wells will stabilize in its nitrate content. Groundwater conditions seem to be improving and Seaboard will continue to monitor groundwater quality and submit annual reports by October 1 of each year until further notice. In a letter dated September 9, 2013, ODAFF agreed that no additional investigation is required at this time.

A letter dated September 23, 2014 from the consultant discussed the latest findings for MW #'s 22, 23 and 24. MW #23 is upgradient of the waste retention structure and MW #'s 22 and 24 are downgradient. Nitrate levels in MW #23 have declined significantly and levels in MW #'s 22 and 24 have fluctuated but no definite trend has been indicated. They believe a nitrate plume is migrating southward through the barn and waste retention structure from the land application areas. The monitoring well field will likely experience peak concentrations until the plume has moved through the monitoring well system. Based on the data evaluated, no change in the evaluation process is recommended and the next annual report will be submitted to ODAFF by October 1, 2015.

A September 24, 2015 letter from the consultant was received and reviewed by ODAFF, and the recommendation indicated no additional monitoring was needed beyond annual sampling due to no correlation between the lagoon and groundwater. A letter dated October 27, 2015 from ODAFF indicated to the facility that this well was above the threshold for nitrate and EC levels; however, no additional monitoring beyond annual monitoring is required based on historical trends and analyses. Further investigations will be determined following future sampling events.

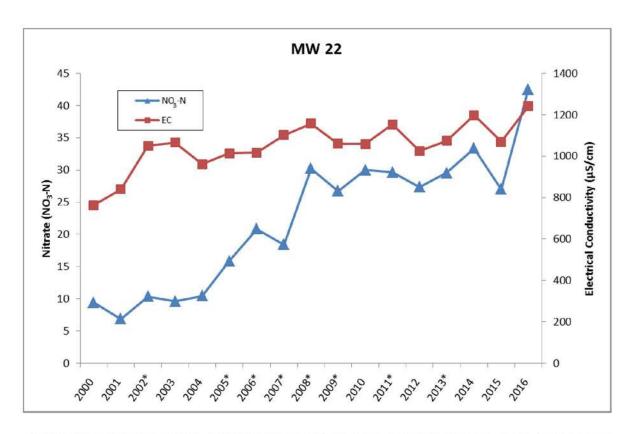
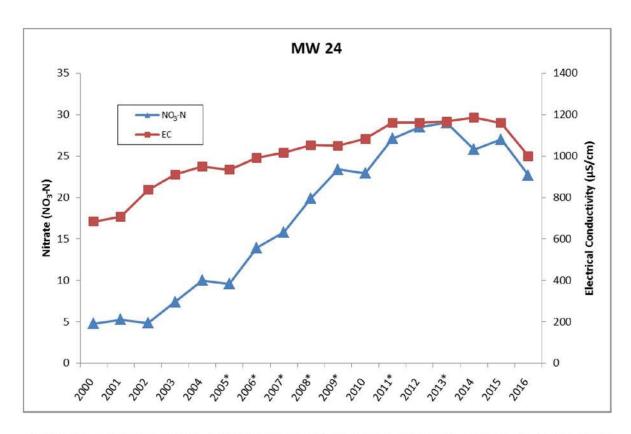



Figure 35. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 22, Seaboard Stewart and Payne Finisher #2. Years denoted with an asterisk (*) represent mean values for the sampling year.

Figure 36. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 24, Seaboard Stewart and Payne Finisher #2. Years denoted with an asterisk (*) represent mean values for the sampling year.

Seaboard Stewart and Payne Finisher #3:

MW# 10: This well was on the 2015 Table 12 and continues to be listed on the 2016 Table 12 as it meets the ODAFF criteria for continued placement on the table.

In an August 27, 2013 letter, Seaboard temporarily suspended use of the upgradient land application area so that nitrate levels in monitoring wells could decline and proposed that no new groundwater investigation was merited and annual monitoring be reinstated. ODAFF concurred by letter on September 3, 2013. A letter dated October 27, 2015 from ODAFF indicated to the facility that this well was above the threshold for nitrate and EC levels; however, no additional monitoring beyond annual monitoring is required based on historical trends and analyses. Further investigations will be determined following future annual sampling events.

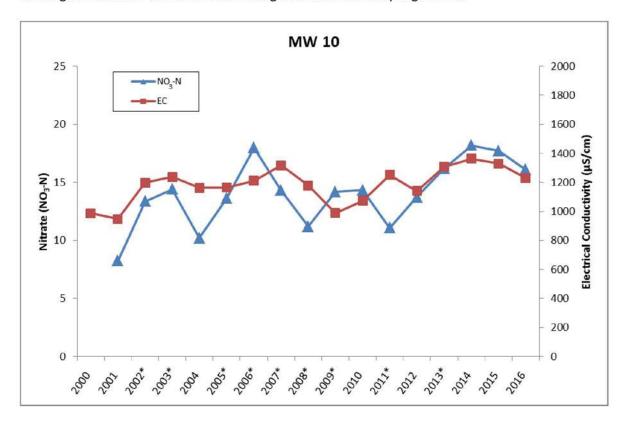


Figure 37. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 10, Seaboard Stewart and Payne Finisher #3. Years denoted with an asterisk (*) represent mean values for the sampling year.

Seaboard Watson Finisher:

MW# 580-04 and 580-07: This well was listed on the 2015 Table 12 and also on the 2016 Table 12.

The consultant sent an annual evaluation of groundwater for this farm on August 13, 2013. It was concluded that a plume of elevated nitrates is moving slowly through the monitoring well network. Site conditions seem to be stable. Seaboard will continue to monitor site conditions and submit the next data evaluation by September 1, 2014.

A letter dated August 25, 2014 from the consultant states that this well is upgradient from the waste retention structure. The peak nitrate level was in 2012 and has begun to decline. They concluded a plume of elevated nitrates is moving slowly through the monitoring well network, moving southeast with the groundwater flow. Site conditions appear to be stable and not a risk in the foreseeable future. Seaboard will continue to monitor site conditions and submit the next data evaluation by September 1, 2015. Based on the August 31, 2015 submittal, ODAFF approved an annual monitoring schedule on September 25, 2015 with bi-annual reporting. Further evaluations will be determined after September 2017 report is submitted.

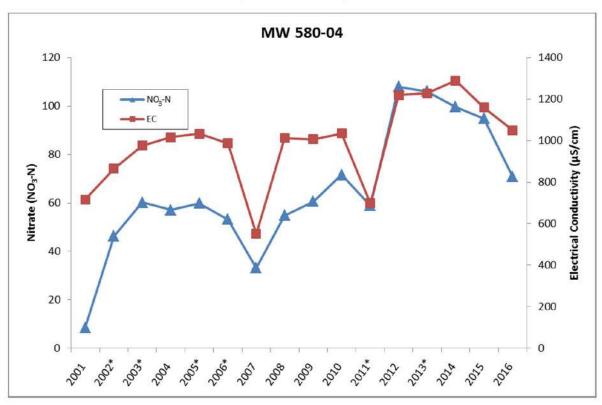


Figure 38. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 580-04, Seaboard Watson Finisher. Years denoted with an asterisk (*) represent mean values for the sampling year.

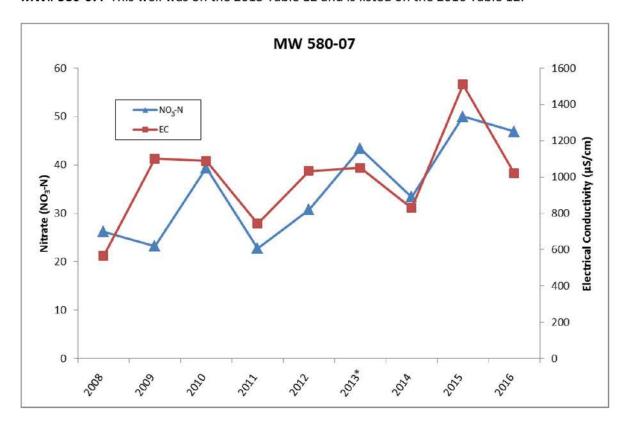


Figure 39. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 580-07, Seaboard Watson Finisher. Years denoted with an asterisk (*) represent mean values for the sampling year.

TUMBLEWEED, LLC

Tumbleweed LLC, Farm 6 BG

MW# 20: Monitoring Well #20 was on Table 13 in 2015 and remains on the 2016 Table 12.

After receiving a letter from ODAFF dated July 9, 2013, requesting a groundwater investigation plan due September 1, 2013, Tumbleweed asked for a 30-day extension from the September 1, 2013 due date, to October 1, 2013, to submit the report on remediation actions for Farm 6 BG, Monitoring Well #20 due to change of ownership. Permission was granted by ODAFF on August 17, 2013.

On October 1, 2013, the report was received by ODAFF and approved October 2, 2013. Their recommendations were as follows:

Discontinue the use of the drying bed

Perform shallow soil investigation by trenching suspect areas within the vicinity of MW #20 and repair broken piping, if encountered

Perform semi-annual monitoring of groundwater and lagoon effluent through 2014 and Report the lab results of semi-annual monitoring within six (6) weeks of collecting samples.

These findings were to be reported to ODAFF by December 1, 2013. The first semi-annual monitoring report for MW#20 was received on November 8, 2013 and nitrates were 87.1 mg/L. The trenching investigation results were received December 6, 2013. Based on the soil sample results of 2.42 mg/Kg and 4.43 mg/Kg, there appears to be no impact to the soil from the adjacent swine structure, including the plumbing. ODAFF accepted the findings by letter on December 17, 2013. Additional sampling has ceased as a result of findings.

On May 21, 2015, the consultant sent a letter to ODAFF, summarizing the semi-annual sampling. Since the drying beds have been decommissioned, the nitrate concentrations have decreased but recommend semi-annual sampling through 2016, at which time the need for additional actions can be evaluated. ODAFF agreed by letter on July 2, 2015 that the groundwater quality has improved since the drying bed removal but further monitoring is needed through bi-annual sampling through 2016. This report is to be submitted no later than February 15, 2017.

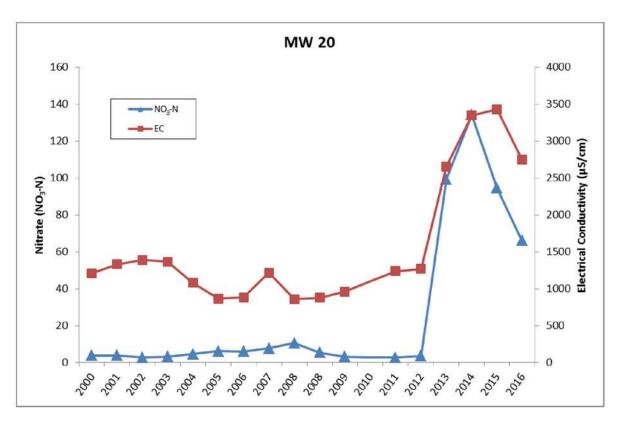


Figure 40. Time-series plot of nitrate-nitrogen (NO₃-N) and electrical conductivity (EC) for MW 20, Tumbleweed Farms, Farm 6 BG. Years denoted with an asterisk (*) represent mean values for the sampling year.

ODAFF Historic and On-going Actions

ODAFF has required some geophysical survey investigations utilizing a resistivity imaging system to be performed at some LMFO swine feeding operations sites.

Lagoons and evaporative basins at some LMFOs have closed, groundwater remediation completed and/or new lagoons constructed.

ODAFF has collaborated with U.S. Geological Survey (USGS) in a study to identify NO₃-N in specific monitoring wells. This project included using nitrogen isotope (N-15) ratios of dissolved major ions, dissolved trace elements, wastewater organic compounds and fecal coliform.

ODAFF, through a cooperative study, has conducted bacteria ribotyping to identify E-coli bacteria isolates in monitoring wells (2005, 2006, 2007, 2008 and 2009).

ODAFF through a cooperative study with the Bio-Environmental Engineering Lab at O.U. has conducted microbial strain tracing using phenotype micro-array technology to assess the groundwater quality in both annual sampling and re-sampling. Annual sampling and lab testing for electrical conductivity, pH, ammonium-nitrogen, total phosphorus and fecal coliform bacteria is in place. Re-sampling of monitoring wells that have lab results indicating Nitrate-N exceeding 10 mg/L and ammonium-N exceeding 1 mg/L.

Detailed sample analysis involving a full suite of cations and anions to conduct fingerprinting between the lagoon and the monitoring well analyses using Tri-linear and Stiff diagrams.

Practices related to land applications of swine waste were required to be modified or changed at certain specific LMFOs.

Evaluation of antecedent land use that existed near LMFO monitoring wells prior to their construction was conducted by USGS.

ODAFF has conducted a special study of a nine-section area around monitoring wells at two LMFOs to evaluate the effect of surrounding land uses and their impact on groundwater quality.

ODAFF looked into the increase in nitrate-nitrogen (NO_3 -N) with concurrent increase in total salinity by examining the electrical conductivity (EC) of the samples because the ECs of the lagoons are significantly higher. In many cases, EC did not increase and in some cases actually decreased indicating that the lagoons are not the primary source of contamination.

ODAFF approved the use of direct push technique (DPT) groundwater investigations.

ODAFF has retrofitted specific monitoring wells by making structural changes in the casing design or casing length with some positive results being realized.

ODAFF has taken a "mid-course correction" in some cases where the well screens were not placed against the appropriate geological aquifer material. In some instances, the cement located behind the casing was inadequate and wells were re-drilled to specifications to solve the problem.

ODAFF has required specific LMFO licensees to retrofit certain monitoring wells by reinstallation of metal protective casing with extensions two feet above the concrete apron to prevent surface runoff impact to the groundwater.

Requirement by ODAFF of a remediation system (on-going in 2013) that includes groundwater remediation by carbon substrate injection.

Appendix I

Below is a cost expenditures worksheet for 106 LMFO Monitoring for FY 16. Information was provided by the Oklahoma Water Resources Board.

Division: Water Quality OWRB %: 0.00% End date: 6/30/2015 CFDA Contact: Mark Belden Contract \$: \$ 170,000.00 2nd Party \$ 170,000.00 2nd Party Bal.: \$ Date submitted: 7/13/2016 OWRB \$: \$ - OWRB Share: \$ - OWRB Bal.: \$ Report date: 5/31/2016 Total \$: \$ 170,000.00 Total project cost to date: \$170,000.00 Total balance: \$ Funds requested this report: \$ 877.76 Personnel Fringes Travel Equipment Supplies Contractual Other Indirect Travel Travel Equipment Supplies Contractual Other Indirect	14,179.81 6.419 - - - - - - - - - - - - - - - - - - -
Division: Water Quality OWRB %: 0.00% End date: 6/30/2015 CFDA	6.419 - - - - - -
Contact: Mark Belden Contract \$: \$ 170,000.00 2nd Party \$ 170,000.00 2nd Party Bal.: \$ Date submitted: 7/13/2016 OWRB \$: \$ - OWRB Share: \$ - OWRB Bal.: \$ Report date: 5/31/2016 Total \$: \$ 170,000.00 Total project cost to date: \$170,000.00 Total balance: \$ Funds requested this report: \$ 877.76 \$ 877.76 \$ 000 Contract and an analysis of the project cost to date: \$ 170,000.00 Total balance: \$ 000 Contract an analysis of the project cost to date: \$ 170,000.00 \$	- - - Cotals
Date submitted: 7/13/2016 OWRB S:	otals
Report date: 5/31/2016 Total \$: \$ 170,000.00 Total project cost to date: \$170,000.00 Total balance: \$ Funds requested this report: \$ 877.76 \$ 87	otals
Funds requested this report: \$ 877.76 Supplies Contractual Other Indirect Contract Award: \$ 170,000.00 \$ 17	
Personnel Fringes Travel Equipment Supplies Contractual Other Indirect Contract Award: \$ 170,000.00 \$ 1 Prior FY's:	
Contract Award: \$ 170,000.00 \$ 1 Prior FY's:	
Prior FY's:	70,000.00
1//31/2015	
8/31/2015	10 20 4 77
9/30/2015 \$ 1,771.89 \$ 1,250.09 \$ 5,524.26 \$ 1,748.53 \$	10,294.77
10/31/2015	27.7(1.60
11/30/2015 \$ 12,438.04 \$ 8,775.28 \$ 2,730.13 \$ 560.44 \$ 983.80 \$ 12,274.00 \$	37,761.69
	28,533.96
	18,910.80
	23,406.16
	36,912.81
	13,302.05
5/31/2016 \$ - \$ 439.00 \$ 438.76 \$	877.76
6/30/2016	
7/31/2016	
8/31/2016	
9/30/2016	
10/31/2016	
11/30/2016	
12/31/2016	
1/31/2017	
2/28/2017	
3/31/2017	
4/30/2017	
5/31/2017	
6/30/2017	
7/31/2017	
8/31/2017	
9/30/2017	
10/31/2017	
11/30/2017	
12/31/2017	
1/31/2018	
2/28/2018	
3/31/2018	
4/30/2018	
5/31/2018	
6/30/2018	
	70,000.00
Balances: \$ (54,470.18) \$ (38,428.92) \$ (11,465.79) \$ (8,057.23) \$ (3,826.22) \$ 170,000.00 \$ (53,751.66) \$	-

Appendix II

Facility Name	No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	Sample
Hanor Huffman G/F Sites 25-28	2	2016	990015	11/18/15	514	561	< 0.11	5.47	0.04	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	ω	2016	990015	11/18/15	679	693	< 0.11	0.37	0.19	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	4	2016	990015							0	Woodward	Dry
Hanor Huffman G/F Sites 25-28	5	2016	990015	11/18/15	550	557	< 0.11	2.12	0.89	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	6	2016	990015	11/18/15	311	311	< 0.11	0.26	0.13	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	7	2016	990015	11/18/15	466	476	< 0.11	9.24	0.02	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	00	2016	990015	11/17/15	389	393	< 0.11	4.81	0.32	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	9	2016	990015	11/17/15	293	288	< 0.11	4.54	1.18	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	10	2016	990015	11/17/15	351	356	< 0.11	2.71	0.05	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	11	2016	990015	11/17/15	289	368	< 0.11	1.75	0.06	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	12	2016	990015	11/17/15	301	299	< 0.11	0.77	0.32	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	14	2016	990015	11/18/15	462	473	< 0.11	1.34	0.04	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	15	2016	990015	11/18/15	405	410	< 0.11	2.72	0.02	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	16	2016	990015	11/18/15	456	467	< 0.11	15.5	0.04	0.0001	Woodward	Wet
Hanor Huffman G/F Sites 25-28	20	2016	990015	11/18/15		<23	< 0.11	< 0.02	< 0.02	0.0001	Woodward	QA
Hanor Huffman G/F Sites 25-28	30	2016	990015	11/18/15		<23	< 0.11	< 0.02	< 0.02	0.0001	Woodward	QA
Hanor Huffman G/F Sites 25-28	70	2016	990015	11/18/15		476	< 0.11	9.43	0.02	0.0001	Woodward	QA
Hanor Huffman G/F Sites 25-28	80	2016	990015							0	Woodward	Dry
Hanor Huffman G/F Sites 25-28	110	2016	990015							0	Woodward	Dry
Hanor Huffman G/F Sites 25-28	130	2016	990015	11/18/15		965	< 0.11	10.2	0.04	0.0001	Woodward	Q
Hanor Huffman G/F Sites 25-28	140	2016	990015	11/18/15		<23	< 0.11	< 0.02	< 0.02	0.0001	Woodward	Q
Hanor Huffman G/F Sites 25-28	210	2016	1356	10/21/15		<23	< 0.11	< 0.02	< 0.02	0.0001	Woodward	Q
Hanor Huffman G/F Sites 25-28.	13	2016	990015	11/18/15	953	969	< 0.11	10.2	0.06	0.0001	Woodward	Wet
Hanor Major Farms	1	2016	1311	2/9/16	901	963	< 0.11	14.7	0.29	0.0001	Major	Wet
Hanor Major Farms	2	2016	1311	2/9/16	678	728	< 0.11	28.6	0.12	0.0001	Major	Wet
Hanor Major Farms	ω	2016	1311	2/9/16	880	922	< 0.11	32.1	0.08	0.0001	Major	Wet

Facility Name	MW No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	
Hanor Major Farms	4	2016	1311	2/9/16	782	840	< 0.11	8.52	0.47	0.0001	Major	
Hanor Major Farms	5	2016	1311	2/9/16	779	816	< 0.11	6.73	0.17	0.0001	Major	_
Hanor Major Farms	6	2016	1311	2/10/16	501	534	< 0.11	42.4	0.26	0.0001	Major	
Hanor Major Farms	19	2016	1311	2/9/16	816	881	< 0.11	2.06	0.05	0.0001	Major	
Hanor Major Farms	20	2016	1311	2/9/16	762	818	< 0.11	0.75	0.05	0.0001	Major	
Hanor Major Farms	21	2016	1311	2/9/16	732	777	< 0.11	12.2	0.12	0.0001	Major	
Hanor Major/Trails End B/G/F #1	7	2016	1311	2/9/16	1258	1360	< 0.11	22.7	0.99	0.0001	Major	-
Hanor Major/Trails End B/G/F #1	00	2016	1311	2/9/16	862	939	< 0.11	16.3	0.33	0.0001	Major	
Hanor Major/Trails End B/G/F #1	9	2016	1311	2/9/16	601	644	< 0.11	14.2	0.67	0.0001	Major	
Hanor Major/Trails End B/G/F #1	10	2016	1311	2/9/16	867	922	< 0.11	22.1	0.47	0.0001	Major	
Hanor Major/Trails End B/G/F #1	11	2016	1311	2/9/16	947	1000	<0.11	24.3	0.46	0.0001	Major	-
Hanor Major/Trails End B/G/F #1	12	2016	1311	2/9/16	1010	1070	< 0.11	26.4	0.04	0.0001	Major	
Hanor Major/Trails End B/G/F #1	90	2016	1311	2/9/16		640	< 0.11	13.6	0.91	0.0001	Major	
Hanor Major/Trails End B/G/F #1	210	2016	1311							0	Major	
Hanor Roberts Ranch	19	2016	1489	11/2/15	336	347	< 0.11	8.11	0.32	0.0001	Woodward	Wet
Hanor Roberts Ranch	20	2016	1489	11/2/15	248	251	< 0.11	8.04	0.75	0.0001	Woodward	Wet
Hanor Roberts Ranch	21	2016	1489	11/2/15	230	232	< 0.11	7.4	0.51	0.0001	Woodward	
Hanor Roberts Ranch	22	2016	1489	11/2/15	7.34	753	< 0.11	25.6	0.04	0.0001	Woodward	-
Hanor Roberts Ranch	23	2016	1489	11/2/15	182	179	< 0.11	9.95	0.11	0.0001	Woodward	Wet
Hanor Roberts Ranch	26	2016	1489	11/2/15	440	457	< 0.11	0.22	0.26	0.0001	Woodward	
Hanor Roberts Ranch	27	2016	1489	11/2/15	247	255	< 0.11	4.78	0.71	0.0001	Woodward	Wet
Hanor Roberts Ranch	31	2016	1489	11/3/15	357	370	< 0.11	16.1	0.42	0.0001	Woodward	Wet
Hanor Roberts Ranch	34	2016	1489	11/3/15						0	Woodward	Dry
Hanor Roberts Ranch	35	2016	1489	11/3/15	403	420	< 0.11	5.65	0.59	0.0001	Woodward	Wet
Hanor Roberts Ranch	36	2016	1489	11/3/15	339	353	< 0.11	7.97	0.55	0.0001	Woodward	-
Hanor Roberts Ranch	38	2016	1489	11/3/15	370	385	< 0.11	6.89	0.04	1	Woodward	Wet

Hanor Roberts Ranch	Facility Name																									
88	87	86	85	84	83	82	81	80	78	76	71	69	68	62	60	59	56	54	52	51	50	47	46	45	44	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	License Number
11/17/15	11/17/15	11/16/15	11/16/15	11/16/15	11/16/15	11/16/15		11/16/15		11/16/15	11/17/15	11/17/15	11/17/15	11/17/15	11/17/15	11/17/15	11/4/15	11/4/15	11/4/15	11/4/15		11/4/15	11/4/15	11/3/15	11/4/15	Date Sampled
395	290	922	301	343	530			483			378	12.87	3.37	252	427	450	354	392	378			1287	329	340	376	Field Conductivity (uS/cm)
401	282	950	309	346	543			496			382	1300	337	248	430	469	362	407	394			1340	345	349	390	Lab Conductivity (uS/cm)
< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11			< 0.11			< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11			< 0.11	< 0.11	< 0.11	< 0.11	NH4-N (ppm)
9.33	3.5	5.15	3.26	8.83	40			24.1			10.1	10.6	9.89	6.62	19.3	5.75	3.14	3.21	6.19			22.2	7.62	ω	5.87	NO3-N (ppm)
0.15	7.68	0.63	0.53	2.89	0.27			1.94			0.12	1.4	0.71	0.98	0.64	1.24	0.1	0.08	0.36			0.83	0.52	0.59	1.72	Total P
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0	0.0001	0	0	0.0001	0.0001	w	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0	0.0001	0.0001	0.0001	0.0001	Fecal Coliform
Woodward	Woodward	Woodard	Woodward	County																						
Wet	Wet	Wet	Wet	Wet	Wet	Dry	Dry	Wet	Dry	Dry	Wet	Dry	Dry	Wet	Wet	Wet	Wet	Sample								

Hanor Roberts Ranch	Facility Name																									
114	113	112	111	110	110	109	108	107	106	105	103	102	101	100	99	98	97	96	95	94	93	92	91	90	89	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	1489	License Number
11/3/15	11/3/15	11/3/15	11/3/15	42312		11/4/15	11/3/15		11/2/15	11/3/15	11/16/15	11/16/15	11/17/15	11/16/15	11/17/15	11/17/15	11/16/15	11/17/15	11/17/15	11/17/15	11/17/15	11/17/15	11/17/15	11/17/15	11/17/15	Date Sampled
847	354						552		519	270	547	494	307	363	255	244	529	2.82	325	770		572	3.45	518	302	Field Conductivity (uS/cm)
885	320						573	668	535	277	573	506	305	375	240	239	547	281	330	759	508	235	339	547	304	Lab Conductivity (uS/cm)
< 0.11	< 0.11						< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	NH4-N (ppm)
65.2	13.4						15.8	11.6	26.2	13.4	13.7	5.7	5.47	24.1	9.4	9.33	17.4	7.53	6.33	10.5	11.2	9.08	9.89	17.2	9.46	NO3-N (ppm)
1.86	0.89						0.84	0.83	0.42	1.66	4.49	1.19	2.92	13.7	1.9	0.85	0.51	1.2	1.05	2.21	1.13	1.05	0.34	1.07	0.2	Total P
0.0001	0.0001	0	0	0	0	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0.0001	0.0001	0.0001	0.0001	Fecal Coliform
Woodward	County																									
Wet	Wet	Dry	Dry	Dry	Dry	Dry	Wet	QA	Wet	QA	Wet	Wet	Wet	Wet	Sample											

Facility Name	No.	Fiscal Year	License	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N	Total P	Fecal Coliform	County	Sample
Hanor Roberts Ranch	115	2016	1489	11/3/15	886	856	< 0.11	68.2	0.23	0.0001	Woodward	Wet
Hanor Roberts Ranch	116	2016	1489							0	Woodward	Dry
Hanor Roberts Ranch	117	2016	1489	11/3/15	388	404	< 0.11	16.4	0.11	0.0001	Woodward	Wet
Hanor Roberts Ranch	118	2016	1489	11/3/15						0	Woodward	Dry
Hanor Roberts Ranch	119	2016	1489	11/16/15	923	943	< 0.11	52.4	0.56	0.0001	Woodward	Wet
Hanor Roberts Ranch	121	2016	1489	11/16/15	486	507	< 0.11	11.8	1.46	0.0001	Woodward	Wet
Hanor Roberts Ranch	122	2016	1489	11/4/15	382	397	< 0.11	1.33	0.03	0.0001	Woodward	Wet
Hanor Roberts Ranch	123	2016	1489	11/2/15	516	534	< 0.11	46.9	0.06	0.0001	Woodward	Wet
Hanor Roberts Ranch	270	2016	1489	11/2/15		254	< 0.11	4.46	0.87	0.0001	Woodward	Q
Hanor Roberts Ranch	380	2016	1489							0	Woodward	Dry
Hanor Roberts Ranch	440	2016	1489							0	Woodward	Dry
Hanor Roberts Ranch	560	2016	1489	12/8/15		889	<0.11	6.88	5.91	0.0001	Woodward	Q
Hanor Roberts Ranch	560	2016	1489	11/4/15						0	Woodward	Q
Hanor Roberts Ranch	710	2016	1489	11/17/15		<23	< 0.11	< 0.02	< 0.02	0.0001	Woodward	QA
Hanor Roberts Ranch	860	2016	1489	11/16/15		948	< 0.11	5.23	0.06	0	Woodward	QA
Hanor Roberts Ranch	870	2016	1489							0	Woodward	Dry
Hanor Roberts Ranch	880	2016	1489							0	Woodward	Dry
Hanor Roberts Ranch	960	2016	1489	11/17/15		277	< 0.11	7.44	1.03	0.0001	Woodward	Q
Hanor Roberts Ranch	1060	2016	1489	11/2/15		<23	< 0.11	< 0.02	< 0.02	0.0001	Woodward	Q
Hanor Roberts Ranch	1170	2016	1489	11/3/15		404	< 0.11	16.6	0.1	0.0001	Woodward	Q
Hanor Roberts Ranch	1220	2016	1489	11/4/15						0	Woodward	Q
Hanor Roberts Ranch	104A	2016	1489							0	Woodward	Dry
Hanor Roberts Ranch	519- 07A0	2016	1489	10/26/15		1880	< 0.11	20.1	0.8	0.0001	Woodward	QA
Hanor Roberts Ranch	81A	2016	1489	11/16/15	413	425	< 0.11	31.7	0.12	0.0001	Woodward	Wet
Hanor Roberts Ranch	81A0	2016	1489	11/16/15		425	< 0.11	32.2	0.11	0.0001	Woodward	QA
Hanor Roberts Ranch	120	2016	1489	11/16/15	370	381	< 0.11	5.01	5.31	0.0001	Woodward	Wet

	740 < 0. 785 < 0. 746 < 0. 1050 < 0. 1100 < 0. 901 < 0. 23 < 0. 762 < 0.	740 <0.11 9.962 785 <0.11 2.7 746 <0.11 6.58 1050 <0.11 6.69 1100 <0.11 10.5 901 <0.11 7.18 <23 <0.11 <0.03 <23 <0.11 <0.02 762 <0.11 6.83	4011 4011 4011 4011 4011 4011	<0.11 9.962 <0.11 2.7 <0.11 6.58 <0.11 6.69 <0.11 10.5 <0.11 7.18 <0.11 0.03 <0.11 <0.02 <0.11 6.83
	vity	(ppm) (ppm) (0.11	NH4-N NO3-N (ppm)	NH4-N NO3-N Total P (ppm) (ppm) Total P < 0.11
NO3-N (ppm) Total P 9.962 0.18 2.7 <0.02 6.58 0.05 6.69 0.64 10.5 0.12 7.18 0.18 0.03 <0.02 <0.02 <0.02 <0.02 <0.02	Fecal Coliform 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001		County Kingfisher	

Readily Name (No. Year Sampled Loby (Scient) (Autory Stees #1-44 No. Year (Scient) (Autory Stees #1-44 No. Year (No. Year (Scient) (Autory Stees #1-44 No. Year (No. Year (Scient) (Autory Stees #1-44 No. Year (No. Yea	Dry	Texas	0							1305	2016	107	Hitch Ent. Seaboard Lease
MAN Fiscal Livense Date Conductivity Conductivity Conductivity MAN MO3 AN Mo3 AN Mo3 AN Mo4 Mo4 AN Mo3 AN Mo4 Mo4 AN Mo		Texas	0							1305	2016	106	Hitch Ent. Seaboard Lease
Amme MAW Ammer Fixed Interest Sampled Date Condectivity Condectivity (LyGrn) CONDITION (LyGrn) (LyGrn)	_	Texas	0							1305	2016	105	Hitch Ent. Seaboard Lease
Amme MAW Fixal License Date Conductivity Conductivity (Loylern) No. Vear Number Sampled (Loylern) (Loylern	Dry	Texas	0							1305	2016	104	Hitch Ent. Seaboard Lease
Marine Marine Marine Lieb Date Conductivity Conducti	Dry	Texas	0							1305	2016	103	Hitch Ent. Seaboard Lease
AMA Fiscal License No. Date Vear Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity (ppm) NHAAN (NO3-AN (ppm)) Field Precal Country H44 78 2016 1485 Sampled Conductivity Conductivity (conductivity (ppm)) (LoS/cm) Country <	_	Texas	0						4/12/16	970008	2016	910	Hitch Ent. Nursery Sites 5-8
Marme May No. Fiscal Field Number License Lob Lab Lab Very Conductivity Co		Texas	0							970008	2016	98	Hitch Ent. Nursery Sites 5-8
MAN		Texas	0							970008	2016	97	Hitch Ent. Nursery Sites 5-8
MAN	_	Texas	0							970008	2016	96	Hitch Ent. Nursery Sites 5-8
Annual A		Texas	0							970008	2016	95	Hitch Ent. Nursery Sites 5-8
Jame MW Fiscal Very Fiscal No. License Very Fiscal No. Conductivity Very No. Conductivity Conductive Conductivity Conductive Conductivity Conductivity Conductivity Conductivity Conduc	_	Texas	0							970008	2016	94	Hitch Ent. Nursery Sites 5-8
Imme MW Image Fical Incress Image Date Vear Conductivity Conductivity Conductivity Conductivity Conductivity Conductivity (Incress Image) Image		Texas	0							970008	2016	93	Hitch Ent. Nursery Sites 5-8
MAW Fiscal No. License Year Date Vear Conductivity (uS/cm) NH4-N (uS/cm) (ppm) NO3-N (ppm) Fecal Fecal Fecal Fecal County 78 2016 1485 4 4 4 NO3-N (ppm) Total P County 80 2016 1485 4 <t< td=""><td>_</td><td>Texas</td><td>0.0001</td><td>0.04</td><td>41.9</td><td>< 0.11</td><td>1500</td><td>1480</td><td>4/12/16</td><td>970008</td><td>2016</td><td>91</td><td>Hitch Ent. Nursery Sites 5-8</td></t<>	_	Texas	0.0001	0.04	41.9	< 0.11	1500	1480	4/12/16	970008	2016	91	Hitch Ent. Nursery Sites 5-8
MW Fiscal No. License Vear Date No. Conductivity Vear NHA-N (us/cm) NHA-N (ppm) NO3-N (ppm) Fecal (ppm) Fecal (ppm) Country 78 2016 1485 3 2016 1485 3 4 4 NHA-N (ppm) N	_	Texas	0							970008	2016	90	Hitch Ent. Nursery Sites 5-8
MW Fiscal No. License Vear Date No. Fiscal Vear License No. Part Vear Number Sampled (uS/cm) (uS/cm) Conductivity (uS/cm) (uS/cm) NH4-N (ppm) (ppm) NO3-N (ppm) Fecal Fecal County County 78 2016 1485 3 4 4 4 NO3-N (ppm) 103-N (ppm) Fecal Fecal County 80 2016 1485 3 4	-	Texas	0							970008	2016	89	Hitch Ent. Nursery Sites 5-8
ne MW Fiscal Number License License License License Date Date Number Conductivity Conductivity (uS/cm) NH4-N (uS/cm) (ppm) NO3-N (ppm) Fecal Fecal County Fecal County 78 2016 1485 4 4 4 NH4-N (ppm) NO3-N (ppm) Total P (Coliform) County 80 2016 1485 4	_	Texas	0							970008	2016	88	Hitch Ent. Nursery Sites 5-8
ne MW No. Fiscal Veral Fiscal Number License Log Date License Log Conductivity Number Conductivity Conductivity (uS/cm) NH4-N (ppm) NO3-N (ppm) Fecal Fecal Footal P (County) County 78 2016 1485 485		Texas	0							970008	2016	87	Hitch Ent. Nursery Sites 5-8
ne MW Fiscal No. License Vear Date Date Number Conductivity (us/cm) Lab (us/cm) (us/cm) NH4-N (ppm) NO3-N (ppm) Fecal Fecal Fecal (ppm) Fecal County 78 2016 1485 Sampled (us/cm) (us/cm) (us/cm) (ppm) NH4-N (ppm) NO3-N (ppm) Fecal Fecal Fecal (ppm) County 79 2016 1485 Sampled (us/cm) Sampl		Texas	0							1485	2016	86	Hitch Ent. Nursery Sites #1-#4
MAW Fiscal No. License Vear Date Incense No. Field Vear Lab Conductivity Conductivity (uS/cm) NH4-N (ppm) NO3-N (ppm) Fecal County County 78 2016 1485 3 2016 1485 3		Texas	0							1485	2016	85	Hitch Ent. Nursery Sites #1-#4
MW Fiscal No. License Vear Date Vear Conductivity Conductivity Conductivity (uS/cm) NH4-N (ppm) (ppm) NH4-N (ppm) NO3-N (ppm) Fecal County Fecal (ppm) County County 78 2016 1485 3 2016 1485 3 3 2016 1485 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 <		Texas	0							1485	2016	84	Hitch Ent. Nursery Sites #1-#4
MW Fiscal No. License Year Date Date No. Conductivity Year Conductivity NH4-N (uS/cm) NH4-N (ppm) NO3-N (ppm) Fecal Total P (county) County 78 2016 1485 485	_	Texas	0							1485	2016	83	Hitch Ent. Nursery Sites #1-#4
MW Fiscal No. License Vear Date Date No. Conductivity Vear Conductivity NH4-N (uS/cm) NH4-N (ppm) NO3-N (ppm) Fecal County Total P County County 78 2016 1485 3 3 3 4 3 4		Texas	0							1485	2016	82	Hitch Ent. Nursery Sites #1-#4
he MW Fiscal License Date Conductivity Conductivity (uS/cm) (ppm) MH4-N NO3-N Fecal County 78 2016 1485	_	Texas	0							1485	2016	81	Hitch Ent. Nursery Sites #1-#4
he MW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal County No. Year Number Sampled (u5/cm) (u5/cm) (ppm) (ppm) Total P Coliform County 78 2016 1485		Texas	0							1485	2016	80	Hitch Ent. Nursery Sites #1-#4
me No. Year Number Sampled (uS/cm) (uS/cm) (ppm) (ppm) Total P Coliform County 78 2016 1485 Field Lab Field Lab Conductivity (NH4-N NO3-N (ppm)) (ppm) Total P Coliform County	-	Texas	0							1485	2016	79	Hitch Ent. Nursery Sites #1-#4
MW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal No. Year Number Sampled (uS/cm) (uS/cm) (ppm) (ppm) Total P Coliform County		Texas	0							1485	2016	78	Hitch Ent. Nursery Sites #1-#4
		County	Fecal Coliform	Total P	NO3-N (ppm)	NH4-N (ppm)	Lab Conductivity (uS/cm)	Field Conductivity (uS/cm)	Date Sampled	License Number	Fiscal Year	No.	Facility Name

Hitch Finishing Sites 1-26 & 37 101 2016 970001	Hitch Finishing Sites 1-26 & 37 100 2016 970001	Hitch Finishing Sites 1-26 & 37 99 2016 970001	Hitch Finishing Sites 1-26 & 37 49 2016 970001	Hitch Finishing Sites 1-26 & 37 48 2016 970001	Hitch Finishing Sites 1-26 & 37 47 2016 970001	Hitch Finishing Sites 1-26 & 37 46 2016 970001 4/12/16	Hitch Finishing Sites 1-26 & 37 45 2016 970001	Hitch Finishing Sites 1-26 & 37 44 2016 970001	Hitch Finishing Sites 1-26 & 37 43 2016 970001	Hitch Finishing Sites 1-26 & 37 42 2016 970001	Hitch Finishing Sites 1-26 & 37 41 2016 970001	Hitch Finishing Sites 1-26 & 37 40 2016 970001	Hitch Finishing Sites 1-26 & 37 39 2016 970001	Hitch Finishing Sites 1-26 & 37 38 2016 970001	Hitch Finishing Sites 1-26 & 37 2016 970001	Hitch Finishing Sites 1-26 & 37 36 2016 970001	Hitch Finishing Sites 1-26 & 37 35 2016 970001	Hitch Finishing Sites 1-26 & 37 34 2016 970001	Hitch Finishing Sites 1-26 & 37 33 2016 970001	Hitch Finishing Sites 1-26 & 37 32 2016 970001	Hitch Finishing Sites 1-26 & 37 31 2016 970001	Hitch Finishing Sites 1-26 & 37 30 2016 970001	Hitch Finishing Sites 1-26 & 37 29 2016 970001	Hitch Finishing Sites 1-26 & 37 28 2016 970001	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	LCVG2
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	VIY

Facility Name	MW No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	
Hitch Sow #1 & Sow Site #2	65	2016	1468	4/12/16	3400	3460	< 0.11	9.35	0.16	0.0001	Texas	
Hitch Sow #1 & Sow Site #2	66	2016	1468							0	Texas	
Hitch Sow #1 & Sow Site #2	67	2016	1468							0	Texas	
Hitch Sow #1 & Sow Site #2	102	2016	1468							0	Texas	
Hitch Sow #1 & Sow Site #2	650	2016	1468							0	Texas	
Hitch Sow 3 thru 6	68	2016	970009							0	Texas	
Hitch Sow 3 thru 6	69	2016	970009							0	Texas	1
Hitch Sow 3 thru 6	70	2016	970009							0	Texas	1
Hitch Sow 3 thru 6	71	2016	970009							0	Texas	1
Hitch Sow 3 thru 6	72	2016	970009							0	Texas	
Hitch Sow 3 thru 6	73	2016	970009							0	Texas	
Hitch Sow 3 thru 6	75	2016	970009							0	Texas	
Hitch Sow 3 thru 6.	74	2016	970009							0	Texas	
Houston Contracting Farms, LTD.	1	2016	990002	12/15/15	8344	8670	0.61	< 0.02	15.8	0.0001	Hughes	
Houston Contracting Farms, LTD.	2	2016	990002	12/15/15	13883	14200	< 0.11	0.29	0.15	0.0001	Hughes	
Houston Contracting Farms, LTD.	ω	2016	990002							0	Hughes	
HOUSTON FINISHING FARM, INC.	1	2016	1377	12/15/15	2414	2260	< 0.11	8.79	< 0.02	0.0001	Hughes	1
HOUSTON FINISHING FARM, INC.	2	2016	1377	12/15/15	7795	7960	< 0.11	0.21	< 0.02	0.0001	Hughes	1
HOUSTON FINISHING FARM, INC.	ω	2016	1377	12/15/15	10064	10300	< 0.11	0.08	< 0.02	0.0001	Hughes	1
L & M Farms Trust	1	2016	980002	11/9/15	99	100	< 0.11	1.2	18.7	0.0001	Canadian	
L & M Farms Trust	2	2016	980002	11/9/15	1983	2480	< 0.11	6	0.97	0.0001	Canadian	
L & M Farms Trust	ω	2016	980002	11/9/15	1208	1100	< 0.11	15.2	2.27	0.0001	Canadian	1
Long Hog Feeders, Blackwelder #1	7	2016	990009							0	Texas	1
Long Hog Feeders, Blackwelder #1	∞	2016	990009							0	Texas	
Long Hog Feeders, Blackwelder #1	9	2016	990009							0	Texas	
Long Hog Feeders, Blackwelder #2	10	2016	990010							0	Texas	

Facility Name	MW No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	Sample
Long Hog Feeders, Blackwelder #2	11	2016	990010							0	Texas	Dry
Long Hog Feeders, Blackwelder #2	12	2016	990010							0	Texas	Dry
Long Hog Feeders, LLC - Straight Site	1	2016	980013							0	Texas	Dry
Long Hog Feeders, LLC - Straight Site	2	2016	980013							0	Texas	Dry
Long Hog Feeders, LLC - Straight Site	ω	2016	980013							0	Texas	Dry
Long Hog Feeders, LLC - Straight Site	4	2016	980013							0	Texas	Dry
Long Hog Feeders, LLC - Straight Site	5	2016	980013							0	Texas	Dry
Long Hog Feeders, LLC - Straight Site	6	2016	980013							0	Texas	Dry
Luthi Farms, LLC	1	2016	980026	11/23/15	832	839	< 0.11	22.5	0.17	0.0001	Ellis	Wet
Luthi Farms, LLC	2	2016	980026	11/23/15	854	873	< 0.11	9.89	0.05	0.0001	Ellis	Wet
Luthi Farms, LLC	ω	2016	980026	11/23/15	656	573	< 0.11	2.25	0.12	0.0001	Ellis	Wet
MANSION FARMS	1	2016	1295	12/15/15	885	758	< 0.11	0.05	0.15	0.0001	Hughes	Wet
MANSION FARMS	2	2016	1295	12/15/15	1319	1220	0.75	0.03	0.05	0.0001	Hughes	Wet
MANSION FARMS	ω	2016	1295	12/15/15	678	672	< 0.11	< 0.02	0.26	0.0001	Hughes	Wet
MANSION FARMS	4	2016	1295	12/15/15	2660	2430	0.36	0.11	0.5	0.0001	Hughes	Wet
MANSION FARMS	5	2016	1295	12/15/15	2560	2380	0.2	0.02	0.1	0.0001	Hughes	Wet
MANSION FARMS	6	2016	1295	12/15/15	1026	982	< 0.11	0.65	0.08	0.0001	Hughes	Wet
Maschhoffs LLC - Randolph Sow & Nursery	432	2016	200102	2/16/16	760	783	< 0.11	6.71	5.82	0.0001	Caddo	Wet
Maschhoffs LLC - Randolph Sow & Nursery	433	2016	200102							0	Caddo	Dry
Maschhoffs LLC - Randolph Sow & Nursery	434	2016	200102	2/16/16	486	522	< 0.11	7.92	2.1	0.0001	Caddo	Wet
Maschhoffs LLC - Randolph Sow & Nursery	435	2016	200102	2/16/16						0	Caddo	Dry
Maschhoffs LLC - Randolph Sow & Nursery	436	2016	200102	2/16/16	456	510	< 0.11	7.81	2.83	0.0001	Caddo	Wet
Maschhoffs LLC - Randolph Sow & Nursery	431A	2016	200102	2/16/16	922	980	< 0.11	16.7	0.5	0.0001	Caddo	Wet
Maschhoffs LLC - Weathers	1W	2016	200208							0	Caddo	Dry
Maschhoffs LLC - Weathers	2W	2016	200208							0	Caddo	Dry
Maschhoffs LLC - Weathers	3W	2016	200208							0	Caddo	Dry

Murp	Murp	Murp	Murp	Murp	Murp	McMi	McMı	McMı	Masc	Masc	Masc	Masc	Masc	Masc	Masc	Masc	Masc	Masc	Masc							
Murphy Brown Kern	Murphy Brown Hall	Murphy Brown Clenney	McMullen Farm	McMullen Farm	McMullen Farm	Maschhoffs, LLC - Lone Mound	Maschhoffs, LLC - Lone Mound	Maschhoffs, LLC - Lone Mound	Maschhoffs LLC - Wright Canyon East & West	Maschhoffs LLC - Wright Canyon East & West	Maschhoffs LLC - Wright Canyon East & West	Maschhoffs LLC - Wright Canyon East & West	Maschhoffs LLC - Wright Canyon East & West	Maschhoffs LLC - Wright Canyon East & West	Maschhoffs LLC - Wright Canyon East & West	Maschhoffs LLC - Wright Canyon East & West	Facility Name									
421	309	307	306	305	304	98	38	7NW	12	11	10	4	2	1	3LM	2LM	1LM	6W	5W	4W	3E	2E	1E	00	7	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
200224	200103	200103	200103	200103	200103	200204	200204	200204	200204	200204	200204	980005	980005	980005	200207	200207	200207	200003	200003	200003	200003	200003	200003	200003	200003	License Number
3/8/16												11/9/15	11/9/15	11/9/15	2/17/16	2/17/16	2/17/16		2/16/16	2/16/16	2/16/16	2/16/16	2/16/16	2/17/16	2/17/16	Date Sampled
901												2580	2190	1127	531	535	557		960	762	869	6.57	597	561	561	Field Conductivity (uS/cm)
794												2450	2130	1090	582	571	612		943	811	930	703	638	551	479	Lab Conductivity (uS/cm)
< 0.11												< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11		< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	NH4-N (ppm)
6.61												10.5	8.19	12	8.47	12.1	6.04		8.31	2.92	3.55	5.59	0.42	2.74	1.82	NO3-N (ppm)
0.18												4.45	0.31	0.98	0.06	0.1	0.14		1.66	0.54	1.81	3.29	1.69	0.63	0.18	Total P
0.0001	0	0	0	0	0	0	0	0	0	0	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	Fecal Coliform
Beaver	Beaver	Beaver	Beaver	Beaver	Beaver	Grady	Grady	Grady	Caddo	Caddo	Caddo	Caddo	Caddo	Caddo	Caddo	Caddo	Caddo	Caddo	Caddo	County						
Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Wet	Sample						

Facility Name	MW No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	ηţ
Murphy Brown Kerns	422	2016	200224							0	Beaver	1
Murphy Brown Kerns	423	2016	200224							0	Beaver	,
Murphy Brown Kerns	424	2016	200224							0	Beaver	,
Murphy Brown Kerns	425	2016	200224	3/8/16	861	696	< 0.11	5.92	0.02	0.0001	Beaver	
Murphy Brown Kerns	426	2016	200224							0	Beaver	
Murphy Brown Naylor	1	2016	200001							0	Beaver	
Murphy Brown Naylor	2	2016	200001							0	Beaver	
Murphy Brown Naylor	з	2016	200001							0	Beaver	
Murphy Brown Naylor	4	2016	200001							0	Beaver	
Murphy Brown Naylor	5	2016	200001							0	Beaver	
Murphy Brown Naylor	6	2016	200001							0	Beaver	
Murphy Brown Plum Thicket	4	2016	980019	12/8/15	2761	4880	< 0.11	9.15	1.74	0.0001	Harper	
Murphy Brown Plum Thicket	5	2016	980019	12/8/15	3318	3430	< 0.11	11.8	0.04	0.0001	Harper	
Murphy Brown Plum Thicket	6	2016	980019	12/8/15	4952	2840	< 0.11	14.4	0.9	0.0001	Harper	
Murphy Brown Plum Thicket	27	2016	980019							0	Harper	
Murphy Brown Plum Thicket	28	2016	980019	12/8/15	2660	2810	<0.11	33.6	3.08	0.0001	Harper	
Murphy Brown Plum Thicket	29	2016	980019	12/8/15	3820	4070	< 0.11	16.4	1.15	0.0001	Harper	
Murphy Brown Plum Thicket	30	2016	980019	12/8/15	2820	2940	< 0.11	13	0.46	0.0001	Harper	
Murphy Brown Plum Thicket	31	2016	980019							0	Harper	
Murphy Brown Plum Thicket	32	2016	980019	12/8/15	2330	2390	< 0.11	10	2.54	0.0001	Harper	
Murphy Brown Plum Thicket	33	2016	980019							0	Harper	
Murphy Brown Plum Thicket	34	2016	980019	12/8/15	1913	1940	< 0.11	22.2	1.12	0.0001	Harper	
Murphy Brown Plum Thicket	35	2016	980019	12/8/15	2417	2460	< 0.11	50.1	1.57	0.0001	Harper	
Murphy Brown Plum Thicket	36	2016	980019	12/8/15	1069	1100	< 0.11	35.7	0.24	0.0001	Harper	
Murphy Brown Plum Thicket	37	2016	980019	12/8/15	2681	2760	< 0.11	12.7	0.68	0.0001	Harper	
Murphy Brown Plum Thicket	38	2016	980019	12/8/15	1537	1550	< 0.11	66	1.14	0.0001	Harper	

7 2016 000011 12/0/15		508 512	Murphy Brown Select 9 5 2016 980012	Murphy Brown Select 9 4 2016 980012	4 2016	4 2016	4 2016	4 2016	4 2016	4 2016	4 2016	5 2016	5 2016	6 2016 080017 12/0/15 500 512	6 2016 980012 12/9/15 508 512					6 2016 980012 12/9/15 508 512	5 2016 980012	5 2016	4 2016	Murphy Brown Select 9 3 2016 980012	Murphy Brown Select 9 2 2016 980012	Murphy Brown Select 9 1 2016 980012 12/9/15	Murphy Brown Plum Thicket 530 2016 980019 12/8/15 2240 <	Murphy Brown Plum Thicket 400 2016 980019 12/8/15 2040 <	Murphy Brown Plum Thicket 290 2016 980019 4220 <	Murphy Brown Plum Thicket 57 2016 980019 12/8/15 928 984 <	Murphy Brown Plum Thicket 56 2016 980019 12/8/15 873 882 <	Murphy Brown Plum Thicket 55 2016 980019 12/8/15 637 670 <	Murphy Brown Plum Thicket 54 2016 980019 12/8/15 947 983 <	Murphy Brown Plum Thicket 53 2016 980019 12/8/15 2070 2050 <	Murphy Brown Plum Thicket 52 2016 980019 12/8/15	Murphy Brown Plum Thicket 51 2016 980019 12/8/15 882 913 <	Murphy Brown Plum Thicket 50 2016 980019 12/8/15 1500 1580 <	Murphy Brown Plum Thicket 49 2016 980019 12/8/15 1019 1060 <	Murphy Brown Plum Thicket 48 2016 980019 12/8/15 1293 1330 <	Murphy Brown Plum Thicket 47 2016 980019 12/8/15 8680 2800 2	Murphy Brown Plum Thicket 46 2016 980019 12/8/15 1244 1300 <	Murphy Brown Plum Thicket 42 2016 980019 12/8/15 640 668 <	Murphy Brown Plum Thicket 41 2016 980019 12/8/15 3271 3350 <	Murphy Brown Plum Thicket 40 2016 980019 12/8/15 1964 2020 <	d (uS/cm) (uS/cm)
508	508															508	508	508	508											928	873	637	947	2070	2/8/15	882	1500	1019	1293	8680	1244	640	3271	1964	Conductivity (uS/cm)
< 0.11	< 0.11															< 0.11	< 0.11	< 0.11	< 0.11								< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	<0.11	< 0.11		< 0.11	< 0.11	< 0.11	<0.11	2.79	< 0.11	< 0.11	3350 < 0.11	<0.11	ty NH4-N (ppm)
14.8 4.01 8.34 0.56																												18.5 2.21	14.7 1.04	26.3 4.69	6.93 3.6	5.41 1.66	22.5 0.46	16.5 1.83		3.01 5.18	7.91 2.07	19.5 1.98	7.85 1.45	36.6 1.85	57 0.45	5.64 1.9	47 0.34	18.8 2.75	(ppm) Total P
0 Harper 0.0001 Harper																								0 Harper	0 Harper	0 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	0.0001 Harper	Fecal County
7	AACC	Wet	Dry	Dry	Drv	D	Drv	Dry	Dry	Dry	Dry	D	Dry	Mo+	Wet	AACC	4400	1000	AACC	Wet	Dry	7	Dry	Dry	Dry	Dry	QA	QA	Q _A	Wet	Wet	Wet	Wet	Wet	Dry	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Sample

Facility Name	No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N	Total P	Fecal Coliform	County	
Murphy Brown Select 9	12	2016	980012	12/9/15	459	487	< 0.11	5.96	1.44	0.0001	Harper	Wet
Murphy Brown Select 9	13	2016	980012	12/9/15	457	447	< 0.11	4.78	0.59	0.0001	Harper	Wet
Murphy Brown Select 9	14	2016	980012							0	Harper	Dry
Murphy Brown Select 9	18	2016	980012							0	Harper	Dry
Murphy Brown Select 9	19	2016	980012							0	Harper	Dry
Murphy Brown Select 9	20	2016	980012							0	Harper	Dry
Murphy Brown Select 9	60	2016	980012	12/9/15		<23	< 0.11	< 0.02	0.02	0.0001	Harper	QA
Murphy Brown Select 9	9A	2016	980012	12/9/15	471	500	< 0.11	4.96	1.13	0.0001	Harper	Wet
Murphy Brown Select 9	9A0	2016	980012	12/9/15		<23	< 0.11	< 0.02	< 0.02	0.0001	Harper	QA
Murphy Brown Trahern	401	2016	200011	3/8/16	5420	5570	2.85	< 0.02	0.08	0.0001	Beaver	Wet
Murphy Brown Trahern	402	2016	200011	3/8/16	720	733	< 0.11	0.91	0.03	0.0001	Beaver	Wet
Murphy Brown Trahern	403	2016	200011	3/10/16	1285	1260	< 0.11	0.86	0.04	0.0001	Beaver	Wet
Murphy Brown Trahern	404	2016	200011	3/8/16	4820	4150	< 0.11	6.9	0.04	0.0001	Beaver	Wet
Murphy Brown Trahern	405	2016	200011	3/10/16	2620	2600	0.36	44.1	0.03	0.0001	Beaver	Wet
Murphy Brown Trahern	406	2016	200011	3/8/16	6135	6360	< 0.11	0.98	0.08	0.0001	Beaver	Wet
Murphy Brown Trahern	407	2016	200011	3/8/16	3341	3460	1.84	< 0.02	0.28	0.0001	Beaver	Wet
Murphy Brown Trahern	408	2016	200011	3/8/16	1735	1780	< 0.11	14.6	0.02	0.0001	Beaver	Wet
Murphy Brown Trahern	409	2016	200011	3/8/16	695	703	< 0.11	18	< 0.02	0.0001	Beaver	Wet
Murphy Brown Trahern	410	2016	200011							0	Beaver	Dry
Murphy Brown Trahern	411	2016	200011							0	Beaver	Dry
Murphy Brown Trahern	412	2016	200011	3/8/16	4240	4270	1.97	< 0.02	0.39	0.0001	Beaver	Wet
Murphy Brown Trahern	414	2016	200011	3/8/16	5540	4840	3.64	< 0.02	0.1	0.0001	Beaver	Wet
Murphy Brown Trahern	4010	2016	200011	3/8/16		<23	< 0.11	< 0.02	< 0.02	0.0001	Beaver	Q
Murphy Brown Trahern	4030	2016	200011	3/10/16		<23	< 0.11	< 0.02	< 0.02	0.0001	Beaver	Q
Murphy Brown Trahern	4060	2016	200011	3/8/16		< 23	< 0.11	< 0.02	< 0.02	0.0001	Beaver	QA
Murphy Brown Trahern	4080	2016	200011	3/8/16		1780	< 0.11	14.5	0.02	0.0001	Beaver	Q

Prestage Farms of OK, LLC - BGF Site 2 4 2016 1471 Prestage Farms of OK, LLC - BGF Site 2 5 2016 1471	4 2016		Prestage Farms of OK, LLC - BGF Site 1 3 2016 1359	Prestage Farms of OK, LLC - BGF Site 1 2 2016 1359	Prestage Farms of OK, LLC - BGF Site 1 1 2016 1359		Murphy Brown Turkey Flats 64 2016 980006 12/9/15	Murphy Brown Turkey Flats 63 2016 980006 12/9/15	Murphy Brown Turkey Flats 25 2016 980006 12/9/15	Murphy Brown Turkey Flats 24 2016 980006	Murphy Brown Tumbleweed-Sage Brush 8V0 2016 990011 3/15/16	Murphy Brown Tumbleweed-Sage Brush 650 2016 980011 3/8/16	Murphy Brown Tumbleweed-Sage Brush 610 2016 980011	Murphy Brown Tumbleweed-Sage Brush 600 2016 980011	Murphy Brown Tumbleweed-Sage Brush 65 2016 980011 3/8/16	Murphy Brown Tumbleweed-Sage Brush 64 2016 980011 3/8/16	Murphy Brown Tumbleweed-Sage Brush 63 2016 980011 3/8/16	Murphy Brown Tumbleweed-Sage Brush 62 2016 980011	Murphy Brown Tumbleweed-Sage Brush 61 2016 980011 12/9/15	Murphy Brown Tumbleweed-Sage Brush 60 2016 980011 12/9/15	Murphy Brown Tumbleweed-Sage Brush 23 2016 980011	Murphy Brown Tumbleweed-Sage Brush 22 2016 980011	Murphy Brown Tumbleweed-Sage Brush 21 2016 980011	Murphy Brown Trahern 413A 2016 200011 3/8/16	Murphy Brown Trahern 40100 2016 200011 3/8/16	Murphy Brown Trahern 4140 2016 200011 3/8/16	Facility Name No. Year Number Sampled
							509	5 1292	5 482		65				408	466	401		Oi .	G				2280			Field Conductivity d (uS/cm)
						001	532	1350	458		941	427	566	< 23	426	463	408		572	3630				2320	< 23	4840	Lab Conductivity (uS/cm)
							< 0.11	< 0.11	< 0.11		< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11		< 0.11	< 0.11				< 0.11	< 0.11	3.64	NH4-N (ppm)
						:	7.3	13.8	2.72		4.73	1.23	7.99	0.11	1.28	1.71	1.33		7.44	174				27.6	< 0.02	< 0.02	NO3-N (ppm)
						0.70	0.73	1.9	1.67		< 0.02	0.17	< 0.02	< 0.02	0.18	12.5	0.5		0.02	0.02				0.03	< 0.02	0.09	Total P
	0	0	0	0	0	0.0001	0.0001	0.0001	0.0001	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0.0001	0.0001	0	0	0	0.0001	0.0001	0.0001	Fecal Coliform
	Texas	Texas	Texas	Texas	Texas	7	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Harper	Beaver	Beaver	Beaver	County
,	Dry	Dry	Dry	Dry	Dry	****	Wet	Wet	Wet	Dry	QA	QA	QA	QA	Wet	Wet	Wet	Dry	Wet	Wet	Dry	Dry	Dry	Wet	QA	QA	Sample

SB Anderson Finisher (317)	SB Anderson Finisher (317)	SB Aguirre Finisher (254)	Rickey Hog Farm	Rickey Hog Farm	Rickey Hog Farm	Prestage Farms of OK, LLC - Sow Multiplier Site	Prestage Farms of OK, LLC - Sow Multiplier Site	Prestage Farms of OK, LLC - Sow Multiplier Site	Prestage Farms of OK, LLC - Finish Site 6 - 8	Prestage Farms of OK, LLC - Finish Site 6 - 8	Prestage Farms of OK, LLC - Finish Site 6 - 8	Prestage Farms of OK, LLC - Finish Site 6 - 8	Prestage Farms of OK, LLC - Finish Site 6 - 8	Prestage Farms of OK, LLC - Finish Site 6 - 8	Prestage Farms of OK, LLC - Finish Site 6 - 8	Prestage Farms of OK, LLC - Finish Site 5	Prestage Farms of OK, LLC - Finish Site 5	Prestage Farms of OK, LLC - Finish Site 5	Prestage Farms of OK, LLC - Finish Site 3 & 4.	Facility Name					
1530	153	173	172	171	170	169	168	3A	2	1	24	23	22	43A	45	44	43	42	41	40	39	38	37	34	No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
970042	970042	970013	970013	970013	970013	970013	970013	1279	1279	1279	980016	980016	980016	970040	970040	970040	970040	970040	970040	970040	1484	1484	1484	1470	License Number
3/29/16	3/29/16							12/14/15	12/14/15	12/14/15					4/12/16										Date Sampled
	990							599	817	955					1204										Field Conductivity (uS/cm)
<23	1030							1680	884	1010					1200										Lab Conductivity (uS/cm)
<0.11	< 0.11							< 0.11	< 0.11	< 0.11					<0.11										NH4-N (ppm)
<0.02	1.38							28.5	1.7	< 0.02					4.79										NO3-N (ppm)
<0.02	0.29							0.27	0.24	< 0.02					1.07										Total P
0.0001	0.0001	0	0	0	0	0	0	0.0001	0.0001	0.0001	0	0	0	0	Δ	0	0	0	0	0	0	0	0	0	Fecal Coliform
Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Pottawato mie	Pottawato mie	Pottawato mie	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	County
QA	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Wet	Wet	Wet	Dry	Dry	Dry	Dry	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Sample

Facility Name SB Barr Finisher (435) SB Barr Finisher (435) SB Barr Finisher (435) SB Bee (F211,12,13)	MW No. 1 1 3A 100	Fiscal Year 2016 2016 2016 2016	License Number 12615 12615 12615 970043	Date Sampled 10/27/15 10/27/15 10/27/15	Field Conductivity (uS/cm) 292 302 528	Lab Conductivity (uS/cm) 397 332 543	NH4-N (ppm) <0.11 <0.11	NO3-N (ppm) 12.7 26.3 8.16	0.05 0.06	Fecal Coliform 0.0001 0.0001	County Kingfisher Kingfisher Kingfisher	4 4 4
SB Bee (F211,12,13)	101	2016	970043							0	Texas	SS
SB Bee (F211,12,13)	102	2016	970043							0	Texas	as
SB Bee (F211,12,13)	103	2016	970043							0	Texas	as
SB Bee (F211,12,13)	104	2016	970043							0	Texas	as
SB Bee (F211,12,13)	105	2016	970043							0	Te	Texas
SB Bee (F211,12,13)	106	2016	970043							0	Texas	as
SB Bee (F211,12,13)	107	2016	970043							0	Texas	as
SB Bee (F211,12,13)	108	2016	970043							0	Texas	as
SB Bee (F211,12,13)	112	2016	970043							0	Texas	as
SB Bee (F211,12,13)	113	2016	970043							0	Tex	Texas
SB Bee (F211,12,13)	114	2016	970043							0	Te	Texas
SB Beelman-Frizzell Fin. (278 - 279)	15	2016	970032							0	Te	Texas
SB Beelman-Frizzell Fin. (278 - 279)	16	2016	970032							0	Texas	as
SB Beelman-Frizzell Fin. (278 - 279)	17	2016	970032							0	Texas	as
SB Beelman-Frizzell Fin. (278 - 279)	36	2016	970032							0	Texas	as
SB Beelman-Frizzell Fin. (278 - 279)	37	2016	970032							0	Texas	Se
SB Beelman-Frizzell Fin. (278 - 279)	38	2016	970032							0	Texas	S
SB Beelman-Frizzell Fin. (278 - 279)	39	2016	970032							0	Texas	S
SB Beelman-Frizzell Fin. (278 - 279)	40	2016	970032							0	Texas	as
SB Beelman-Frizzell Fin. (278 - 279)	41	2016	970032							0	Texas	as
SB Beelman-Frizzell Fin. (278 - 279)	42	2016	970032							0	Texas	as
SB Beelman-Frizzell Fin. (278 - 279)	43	2016	970032							0	Texas	as

Facility Name	No.	Fiscal Year	License	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	Sample
SB Beelman-Frizzell Fin. (278 - 279)	44	2016	970032							0	Texas	Dry
SB Beelman-Frizzell Fin. (278 - 279)	45	2016	970032							0	Texas	Dry
SB Beelman-Frizzell Fin. (278 - 279)	46	2016	970032							0	Texas	Dry
SB Beelman-Frizzell Fin. (278 - 279)	47	2016	970032							0	Texas	Dry
SB Best Nursery (152 - 153)	34	2016	12612	10/27/15	639	663	< 0.11	23.4	0.03	0.0001	Kingfisher	Wet
SB Best Nursery (152 - 153)	35	2016	12612	10/27/15	1538	1580	< 0.11	52.4	0.11	0.0001	Kingfisher	Wet
SB Best Nursery (152- 153)	25	2016	12612	10/27/15	1018	1050	< 0.11	9.45	0.97	0.0001	Kingfisher	Wet
SB Best Nursery (152- 153)	26	2016	12612	10/27/15	870	890	< 0.11	14.9	0.11	0.0001	Kingfisher	Wet
SB Best Nursery (152- 153)	33	2016	12612	10/27/15						0	Kingfisher	Dry
SB Best Nursery (152-153)	260	2016	12612	10/27/15		890	< 0.11	15.3	0.11	0.0001	Kingfisher	QA
SB Brenneman (F330)	33	2016	980022							0	Texas	Dry
SB Brenneman (F330)	34	2016	980022							0	Texas	Dry
SB Brenneman (F330)	35	2016	980022							0	Texas	Dry
SB Brown Sow	36	2016	12621	10/26/15	687	704	< 0.11	2.66	1.19	11	Kingfisher	Wet
SB Brown Sow	37	2016	12621	10/26/15	870	884	< 0.11	6.64	0.12	0.0001	Kingfisher	Wet
SB Brown Sow	38	2016	12621	10/26/15	814	804	< 0.11	7.31	0.28	0.0001	Kingfisher	Wet
SB Brown Sow (S61)	370	2016	12621	10/26/15		884	< 0.11	6.88	0.13	0.0001	Kingfisher	QA
SB Bryan Sow & Norris (62, 436)	20- 2011	2016	12611	10/26/15	397	385	< 0.11	10.4	0.42	0.0001	Kingfisher	Wet
SB Bryan Sow & Norris (62, 436)	21- 2011	2016	12611	10/26/15	11.84	1150	< 0.11	49.9	0.37	0.0001	Kingfisher	Wet
SB Bryan Sow & Norris (62, 436)	22- 2011	2016	12611	10/26/15	617	584	< 0.11	2.71	0.43	0.0001	Kingfisher	Wet
SB Bryan Sow & Norris (62, 436)	519-04	2016	12611	10/27/15	1207	1170	< 0.11	29.6	0.8	0.0001	Kingfisher	Wet
SB Bryan Sow & Norris (62, 436)	519-05	2016	12611	10/27/15	1332	1390	< 0.11	7.64	0.05	0.0001	Kingfisher	Wet
SB Bryan Sow & Norris (62, 436)	519- 07A	2016	12611	10/26/15	1910	1910	< 0.11	20.4	0.57	0.0001	Kingfisher	Wet
SB Bryan Sow & Norris (62, 436)	519-08	2016	12611	10/27/15	1570	1540	< 0.11	36	0.56	0.0001	Kingfisher	Wet
SB Bryan Sow & Norris (62, 436)	519-09	2016	12611	10/27/15	1550	1550	< 0.11	46.6	0.18	0.0001	Kingfisher	Wet

SB Depuy/Friesen Finishers (323-326)	SB Depuy/Friesen Finishers (323-326)	SB Coppock Finisher (298)	SB Coppock Finisher (298)	SB Coppock Finisher (298)	SB Cliff Sow (43)	SB Choate Sow (S65)	SB Bryan Sow & Norris (62, 436)	Facility Name											
134	133	733	732	731	1	509- N6 (aka 42)	509- N5 (aka 45)	509- N4 (aka 43)	509- N3 (aka 44)	6540- 10	6540- 07	6540- 06	6540- 05	6540- 04	519-15	519-14	519-11	519-10	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
970019	970019	200219	200219	200219	970014	1225	1225	1225	1225	12611	12611	12611	12611	12611	12611	12611	12611	12611	License Number
	3/22/16				3/29/16	10/26/15	10/26/15		10/26/15		10/26/15	10/26/15	10/26/15	10/26/15	10/26/15	10/26/15	10/26/15	10/26/15	Date Sampled
	878				2020	562	663		500		326				1409	749	8.59	1630	Field Conductivity (uS/cm)
	902				2090	585	684		547		329				1390	774	863	1640	Lab Conductivity (uS/cm)
	< 0.11				< 0.11	< 0.11	< 0.11		< 0.11		< 0.11				< 0.11	< 0.11	< 0.11	< 0.11	NH4-N (ppm)
	6.38				0.91	0.61	< 0.02		17.8		0.04				0.13	< 0.02	15.2	4.99	NO3-N (ppm)
	0.22				0.28	0.75	0.2		0.97		0.33				0.36	0.58	0.38	0.55	Total P
0	0.0001	0	0	0	0.0001	0.0001	0.0001	0	0.0001	0	0.0001	0	0	0	0.0001	0.0001	0.0001	0.0001	Fecal Coliform
Texas	Texas	Texas	Texas	Texas	Texas	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	County
Dry	Wet	Dry	Dry	Dry	Wet	Wet	Wet	Dry	Wet	Dry	Wet	Dry	Dry	Dry	Wet	Wet	Wet	Wet	Sample

SB Dixon/Jeffus S	SB Dixon/Jeffus S	SB Dixon/Jeffus S.	SB Dixon/Jeffus S	SB Dixon Nursery (124)	SB Dixon Nursery (124)	SB Dixon Nursery (124)	SB Depuy/Frieser																			
SB Dixon/Jeffus Sow Farm (S37 & S38)	(124)	(124)	(124)	SB Depuy/Friesen Finishers (323-326)	Facility Name																					
2203	ω	2	1	247	246	245	1840	1820	1790	820	184	183	182	181	180	179	143	142	141	140	139	138	137	136	135	No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
200220	200220	200220	200220	200005	200005	200005	970019	970019	970019	970027	970019	970019	970019	970019	970019	970019	970019	970019	970019	970019	970019	970019	970019	970019	970019	License Number
								3/22/16	3/22/16	3/22/16	3/22/16	3/22/16	3/22/16			3/22/16			3/22/16			3/22/16	3/22/16			Date Sampled
											807	2010	701			536			6.12			714	1181			Field Conductivity (uS/cm)
									<23		819	1990	715			531			577			715	1120			Lab Conductivity (uS/cm)
									< 0.11		< 0.11	< 0.11	< 0.11			< 0.11			< 0.11			< 0.11	< 0.11			NH4-N (ppm)
									< 0.02		6.57	31.4	6.48			2.39			2.28			12.8	3.1			NO3-N (ppm)
									< 0.02		< 0.02	< 0.02	< 0.02			0.68			1.53			1.33	0.32			Total P
0	0	0	0	0	0	0	0	0	0.0001	0	0.0001	0.0001	0.0001	0	0	0.0001	0	0	0.0001	0	0	0.0001	0.0001	0	0	Fecal Coliform
Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	County
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	QA	QA	Dry	Wet	Wet	Wet	Dry	Dry	Wet	Dry	Dry	Wet	Dry	Dry	Wet	Wet	Dry	Dry	Sample

SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 2, 3 & 4 (428-430)	SB Fairview Finisher 2, 3 & 4 (428-430)	SB Fairview Finisher 2, 3 & 4 (428-430)	SB Fairview Finisher 2, 3 & 4 (428-430)	SB Fairview Finisher 2, 3 & 4 (428-430)	SB Fairview Finisher 2, 3 & 4 (428-430)	SB Fairview Finisher 2, 3 & 4 (428 -430)	SB Fairview Finisher 1	SB Fairview Finisher 1	SB Fairview Finisher 1	SB Fairview Fin 5-8 (431 - 434)	SB Fairview Fin 5 - 8 (431 - 434)	SB Fairview Fin 5 - 8 (431 - 434)	SB Fairview Fin 2, 3, 4 (428-430)	SB Fairview Fin 2, 3, 4 (428-430)	SB Fairview Fin 2, 3, 4 (428 - 430)	SB Fairview Fin 2, 3, 4 (428 - 430)	SB Dorman Sow (48-49)	SB Dixon/Jeffus Sow Farm (S37 & S38)	SB Dixon/Jeffus Sow Farm (S37 & S38)	Facility Name					
Ľ	18	14	12	ω	2	1	19	35	34	33	280	26	25	20	13	180	30	9V	8V	12V	11V	10V	350	2205	2204	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
1356	1352	1352	1352	1352	1352	1352	1352	1353	1353	1353	1356	1356	1356	1352	1352	1352	1352	990011	990011	990011	990011	990011	1353	200220	200220	License Number
10/21/15	10/20/15	10/20/15	10/20/15	10/20/15	10/20/15	10/20/15	10/20/15	10/19/15	10/19/15	10/19/15	10/21/15	10/21/15	10/21/15	10/20/15	10/20/15	10/20/15	10/20/15	3/15/16	3/15/16	3/15/16	3/15/16	3/15/16				Date Sampled
534	593	555	555	614	641	554	606	502	522	488	718	901	527	580	500			885	959	660	975	1190				Field Conductivity (uS/cm)
497	591	552	549	610	640	552	601	501	520	490	<23	899	520	577	496	591	<23	875	948	671	977	1170				Lab Conductivity (uS/cm)
< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11				NH4-N (ppm)
21.2	26.8	19.3	14.9	22.9	23.8	26.1	0.7	6.11	11.4	12.3	< 0.02	0.03	10.4	0.26	11.1	27.7	< 0.02	3.26	4.71	4.89	5.74	6.59				NO3-N (ppm)
2.32	0.08	0.11	0.08	1.68	1.26	0.45	0.09	0.17	0.17	0.24	< 0.02	0.69	0.09	0.09	0.11	0.1	< 0.02	< 0.02	< 0.02	0.15	0.37	0.02				Total P
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0	0	Fecal Coliform
Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Beaver	Beaver	Beaver	Beaver	Beaver	Beaver	Texas	Texas	County
Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Q _A	Q	Wet	Wet	Wet	Wet	Wet	Dry	Dry	Dry	Sample

SB Fairview Nur 1 - 4	SB Fairview Finisher 5 - 8 (431-434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	SB Fairview Finisher 5 - 8 (431 - 434)	Facility Name											
6200- 07	6200- 06	6200- 03	3300-	3300- 04	3300-	3300- 02	3300-	3200- 08	3200- 05	3200- 02	3200- 01	22	23B	33	32	31	30	28	27	24	23	21	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
1351	1351	1351	1351	1351	1351	1351	1351	1351	1351	1351	1351	1356	1356	1356	1356	1356	1356	1356	1356	1356	1356	1356	License Number
10/19/15	10/19/15	10/20/15	10/21/15	10/21/15	10/20/15	10/21/15	10/21/15	10/20/15	10/20/15	10/20/15	10/20/15	10/21/15	10/21/15	10/21/15	10/20/15	10/20/15	10/20/15	10/21/15	10/21/15	10/21/15		10/21/15	Date Sampled
812	881	935	433	521	625	468	1189	738	782	593	552	7.31	851	595	1190	345	488	718	743	507		731	Field Conductivity (uS/cm)
831	1020	924	404	512	597	462	1130	752	795	587	547	748	886	592	1190	356	484	711	715	505		726	Lab Conductivity (uS/cm)
< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11		< 0.11	NH4-N (ppm)
6.13	16.4	20.4	14	8.45	19.3	9.77	7.48	4.89	7.53	< 0.02	0.65	11.5	47.9	19.5	41.7	10.7	18.1	21.4	0.07	24.1		19.3	NO3-N (ppm)
2.35	0.65	0.44	2.07	0.08	0.31	0.1	3.28	0.19	0.39	0.14	0.72	0.2	0.88	0.38	0.78	0.05	0.75	0.1	0.19	0.27		0.12	Total P
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0.0001	Fecal Coliform
Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	Major	County												
Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Wet	Sample												

SB Flanagan Sow (41)	SB Fisher (F215)	SB Fisher (F215)	SB Fisher (F215)	SB Fariview Nur 1 - 4	SB Fairview Sow 2 (64)	SB Fairview Sow 2	SB Fairview Sow 2	SB Fairview Sow 2	SB Fairview Sow 1	SB Fairview Sow 1	SB Fairview Sow 1	SB Fairview Nur 1-4	SB Fairview Nur 1 - 4 (155 - 158)	SB Fairview Nur 1 - 4 (155 - 158)	SB Fairview Nur 1 - 4 (155 - 158)	SB Fairview Nur 1 - 4 (155 - 158)	SB Fairview Nur 1 - 4	Facility Name						
124	132	131	130	3200- 06	400	41	40	39	ω	2	1	38	37	36	6300- 05	6300- 04	3300-	3300- 020	250	6300- 07	6300-	6200- 09	6200- 08	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
980023	990001	990001	990001	1351	1354	1354	1354	1354	1354	1354	1354	1350	1350	1350	1351	1351	1351	1351	1356	1351	1351	1351	1351	License Number
				10/20/15	10/19/15	10/19/15	10/19/15	10/19/15	10/19/15	10/19/15	10/19/15	10/19/15	10/19/15	10/19/15	10/20/15	10/20/15	10/20/15	10/21/15	10/21/15	10/20/15	10/20/15	10/20/15	10/20/15	Date Sampled
				599		922	569	744	584	957	700	605	560	560	1163	1410					622	826	875	Field Conductivity (uS/cm)
				594	564	863	577	736	564	925	678	603	570	561	1030	1090	588	<23	520		617	806	856	Lab Conductivity (uS/cm)
				< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11		< 0.11	< 0.11	< 0.11	NH4-N (ppm)
				5.54	15.7	39	16.3	19.6	10.1	17	13.8	2.74	10.8	3.5	9.57	8.39	20.9	< 0.02	10.3		12.4	28	26.6	NO3-N (ppm)
				0.28	1.08	0.75	0.92	0.17	0.09	0.08	0.08	0.33	0.34	0.06	0.08	0.41	0.42/0.41	< 0.02	0.09		0.75	0.47	0.76	Total P
0	0	0	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0.0001	0.0001	0.0001	Fecal Coliform
Texas	Texas	Texas	Texas	Major	Major	Major	Major	Major	Major	Major	Major	Woodward	Woodward	Woodward	Major	Major	Major	Major	Major	Major	Major	Major	Major	County
Dry	Dry	Dry	Dry	Wet	QA	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Q	Q	QA	Dry	Wet	Wet	Wet	Sample

Facility Name	MW No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	Sample
SB Flanagan Sow (41)	125	2016	980023							0	Texas	Dry
SB Flanagan Sow (41)	126	2016	980023							0	Texas	Dry
SB Galloway Nursery (125)	1											
SB Galloway Nursery (125)	2	2016	200104	3/29/16	6.33	670	<0.11	3.36	0.03	0.0001	Texas	Wet
SB Galloway Nursery (125)	20	2016	200104	3/29/16						0	Texas	Dry
SB Garrison Nursery (123)	30	2016	970024							0	Texas	Dry
SB Garrison Nursery (123)	31	2016	970024							0	Texas	Dry
SB Garrison Nursery (123)	32	2016	970024							0	Texas	Dry
SB Gerber/Magnolia Fin. (287 & 295)	2004	2016	990013							0	Texas	Dry
SB Gerber/Magnolia Fin. (287 & 295)	2005	2016	990013							0	Texas	Dry
SB Gerber/Magnolia Fin. (287 & 295)	2006	2016	990013							0	Texas	Dry
SB Gerber/Magnolia Fin. (287 & 295)	2007	2016	990013							0	Texas	Dry
SB Gerber/Magnolia Fin. (287 & 295)	2008	2016	990013							0	Texas	Dry
SB Gerber/Magnolia Fin. (287 & 295)	2009	2016	990013							0	Texas	Dry
SB Green Finisher (316)	162	2016	980007							0	Texas	Dry
SB Green Finisher (316)	163	2016	980007							0	Texas	Dry
SB Green Finisher (316)	164	2016	980007							0	Texas	Dry
SB Haar, Hicks, McCright	901	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	902	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	903	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	904	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	905	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	906	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	907	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	908	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	909	2016	200009							0	Texas	Dry

Facility Name	MW No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	Sample
SB Haar, Hicks, McCright	910	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	911	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	912	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	913	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	914	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	915	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	916	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	917	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	918	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	919	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	920	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	921	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	922	2016	200009	3/23/16	1261	1310	< 0.11	3.36	3.62	0.0001	Texas	Wet
SB Haar, Hicks, McCright	923	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	924	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	925	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	926	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	927	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	928	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	929	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	930	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	931	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	932	2016	200009							0	Texas	Dry
SB Haar, Hicks, McCright	933	2016	200009							0	Texas	Dry
SB Harmon (F310)	121	2016	980024							0	Texas	Dry
SB Harmon (F310)	122	2016	980024							0	Texas	Dry

Facility Name SB Harmon (F310) SB Hill Nursery (122) SB Hill Nursery (122) SB Hill Nursery (122) SB Hixon Sow Farm (42) SB Kauffman Sow (33)	MW No. 123 165 166 1167 177 178 178 242 243 244	Fiscal Year 2016 2016 2016 2016 2016 2016 2016 2016	License Number 980024 970025 970025 970015 970015 970015 970015 970015 970014	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	(ppm)	Total P	Fecal Coliform 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	County Texas	Sample Dry
SB Kauffman Sow (33)	243	2016	200004							0	Texas	Dry
SB Kendra East Sow (44)	4	2016	200311							0	Texas	Dry
SB Kendra East Sow (44)	6 5	2016	200311							0 0	Texas	Dry
SB KENDRA WEST SOW FARM	2209	2016	200227							0	Texas	Dry
SB KENDRA WEST SOW FARM SB KENDRA WEST SOW FARM	2210 2211	2016	200227							0 0	Texas	Dry
SB Lindsay Finishers (355 - 356)	24	2016	970044	3/29/16	1110	1150	< 0.11	7.44	0.29	0.0001	Texas	Wet
SB Long Sow Farm (40) SB Long Sow Farm (40)	156 157	2016	990005	3/29/16 3/29/16	1480 747	1550 785	<0.11	3.23	0.06	0.0001	Texas	Wet Wet
SB Long Sow Farm (40)	1560	2016	990005	3/29/16		1550	< 0.11	3.39	0.06	0.0001	Texas	QA
SB McBride (F342) SB McBride (F342)	127	2016	980025 980025							0	Texas	Dry
SB McBride (F342)	129	2016	980025							0	Texas	Dry

SB Mullins F	SB Mullins F	SB Mouser I	SB Mouser I	SB Mouser I	SB Mouser I	SB Mouser I	SB Mouser I	SB Mouser I	SB Morris N	SB Morris N	SB Morris N	SB Mitchell	SB Metcalf/	SB Metcalf/	SB Metcalf/	SB McGarra										
SB Mullins Finisher (329)	SB Mullins Finisher (329)	SB Mouser II Finisher (218)	SB Mouser I Finisher (217)	SB Mouser I Finisher (217)	SB Mouser I Finisher (217)	SB Morris Nursery (N121)	SB Morris Nursery (N121)	SB Morris Nursery (N121)	SB Mitchell Finishers (327-328)	SB Metcalf/Watkins Nur. Farm (#126)	SB Metcalf/Watkins Nur. Farm (#126)	SB Metcalf/Watkins Nur. Farm (#126)	SB McGarraugh Sow (S34 & S35)	Facility Name												
83	82	72	71	69	68	75	74	73	2202	2201	2200	81A	760	80	79	76	2214	2213	2212	2217	2216	2215	ω	2	1	No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
970027	970027	970016	970016	970016	970016	980009	980009	980009	200226	200226	200226	970026	970026	970026	970026	970026	200225	200225	200225	200221	200221	200221	200221	200221	200221	License Number
	3/22/16			3/22/16									3/15/16	3/15/16		3/15/16										Date Sampled
	1640			557										676		1000										Conductivity (uS/cm)
	1540			569									<23	669		973										Conductivity (uS/cm)
	< 0.11			< 0.11									< 0.11	< 0.11		< 0.11										(ppm)
	15.1			2.19									< 0.02	5.74		4.94										(ppm)
	0.39			0.31									< 0.02	0.08		0.19										Total P
0	0.0001	0	0	0.0001	0	0	0	0	0	0	0	0	0.0001	0.0001	0	0.0001	0	0	0	0	0	0	0	0	0	Fecal Coliform
Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	County
Dry	Wet	Dry	Dry	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	QA	Wet	Dry	Wet	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Sample

SB North Finishers	SB Nichols Radcliff Nurseries (131-137)	SB Mullins Finisher (329)	Facility Name																							
201	200	199	198	197	196	195	194	2560	2550	2540	2520	256	255	254	253	252	251	250	249	248	850	87	86	85	84	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
200007	200007	200007	200007	200007	200007	200007	200007	990012	990012	990012	990012	990012	990012	990012	990012	990012	990012	990012	990012	990012	970027	970027	970027	970027	970027	License Number
3/23/16								3/1/16	3/1/16	3/1/16	3/1/16	3/1/16	3/1/16	3/1/16	3/1/16	3/1/16	3/1/16	3/1/16	3/1/16	3/1/16				3/22/16		Date Sampled
1443												1473	3560	1171	836	1810	1359	1407	1104	1038				1115		Field Conductivity (uS/cm)
1500								1470	<23	<23	1820	1480	3580	1120	837	1820	1350	1340	1100	1030				1150		Lab Conductivity (uS/cm)
< 0.11								< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11				0.26		NH4-N (ppm)
19.5								7.87	< 0.02	< 0.02	12	7.95	5.34	15.3	24.2	12.1	5.04	7.59	9.18	9.49				12		NO3-N (ppm)
< 0.02								0.02	< 0.02	< 0.02	0.03	0.03	0.03	0.27	0.07	0.03	0.07	0.06	0.05	0.1				0.61		Total P
0.0001	0	0	0	0	0	0	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0	0	0.0001	0	Fecal Coliform
Texas	Beaver	Texas	Texas	Texas	Texas	Texas	County																			
Wet	Dry	Q	QA	Q _A	Q	Wet	Dry	Dry	Dry	Wet	Dry	Sample														

Facility Name	No.	Fiscal Year	License	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N	NO3-N	Total P	Fecal Coliform	County	Sample
SB North Finishers	202	2016	200007							0	Texas	Dry
SB North Finishers	203	2016	200007							0	Texas	Dry
SB North Finishers	204	2016	200007							0	Texas	Dry
SB North Finishers	205	2016	200007							0	Texas	Dry
SB North Finishers	206	2016	200007							0	Texas	Dry
SB North Finishers	207	2016	200007							0	Texas	Dry
SB North Finishers	208	2016	200007							0	Texas	Dry
SB North Finishers	209	2016	200007							0	Texas	Dry
SB North Finishers	210	2016	200007							0	Texas	Dry
SB North Finishers	211	2016	200007							0	Texas	Dry
SB North Finishers	212	2016	200007							0	Texas	Dry
SB North Finishers	213	2016	200007							0	Texas	Dry
SB North Finishers	214	2016	200007							0	Texas	Dry
SB North Finishers	215	2016	200007							0	Texas	Dry
SB North Finishers	216	2016	200007							0	Texas	Dry
SB North Finishers	217	2016	200007							0	Texas	Dry
SB North Finishers	218	2016	200007							0	Texas	Dry
SB North Finishers	219	2016	200007							0	Texas	Dry
SB North Finishers	220	2016	200007							0	Texas	Dry
SB North Finishers	221	2016	200007							0	Texas	Dry
SB North Finishers	222	2016	200007							0	Texas	Dry
SB North Finishers	223	2016	200007							0	Texas	Dry
SB North Finishers	224	2016	200007							0	Texas	Dry
SB North Finishers	226	2016	200007							0	Texas	Dry
SB North Finishers	227	2016	200007							0	Texas	Dry
SB North Finishers	228	2016	200007							0	Texas	Dry

SB Roberts I (South) Finisher (337)	SB Reust Finishers (299-301)	SB Oakes Sow (GS30)	SB Oakes Sow (GS30)	SB Oakes Sow (GS30)	SB Northeast Finishers	SB North Finishers	Facility Name																			
2206	152	151	150	149	148	147	120	119	118	241	240	239	940	880	99	98	97	96	95	94	91	90	89	88	229	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
200223	970018	970018	970018	970018	970018	970018	970018	970018	970018	200006	200006	200006	970028	970028	970028	970028	970028	970028	970028	970028	970028	970028	970028	970028	200007	License Number
													3/16/16	3/16/16			3/16/16			3/16/16	3/15/16			3/16/16		Date Sampled
																	627			751	820			706		Field Conductivity (uS/cm)
													702	<23			625			744	788			700		Lab Conductivity (uS/cm)
													< 0.11	< 0.11			< 0.11			< 0.11	< 0.11			< 0.11		NH4-N (ppm)
													3.32	< 0.02			6.18			3.7	8.78			4.98		NO3-N (ppm)
													0.36	< 0.02			0.17			0.29	0.98			0.35		Total P
0	0	0	0	0	0	0	0	0	0	0	0	0	0.0001	0.0001	0	0	0.0001	0	0	0.0001	0.0001	0	0	0.0001	0	Fecal Coliform
Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	Texas	County
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Q _A	QA	Dry	Dry	Wet	Dry	Dry	Wet	Wet	Dry	Dry	Wet	Dry	Sample

Eachity Name	Dry	Texas	0							970020	2016	60	SB Slater Fin. (229-231, 233, 255-257)
Indilty Name MAN Feed	D	Texas	0							970020	2016	59	SB Slater Fin. (229-231, 233, 255-257)
Inicibler (1337) 2202 2202 2203 2204 2205 2206 2202 2204 2205 2206 2200 2207 2208 2207 2208	Dry	Texas	0							970020	2016	58	SB Slater Fin. (229-231, 233, 255-257)
MAIN Fied Liab Conductivity Conductivity (pm) Nat	Dry	Texas	0							970020	2016	57	SB Slater Fin. (229-231, 233, 255-257)
Indility Name MAN Fixed License Date Conductivity May Conductivity Conductivity	Dry	Texas	0							970020	2016	14	SB Slater Fin. (229-231, 233, 255-257)
Inisibir (337) 2207 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20223 2016 20228 2036 2046 2057 2068	Dry	Texas	0							970020	2016	13	SB Slater Fin. (229-231, 233, 255-257)
cellity Name MAV Fiscal Volume Lebrase Lonductivity Volume Conductivity (aux) (aux) NHA-N (byen) (byen) NO3-N (conflictivity (byen)) NHA-N (byen) (byen) Fecal (conflictivity (byen)) Pecal (conflictivity (byen)) Pecal (conflictivity (byen)) NHA-N (byen) NO3-N (conflictivity (byen)) NHA-N (byen) Pecal (conflictivity (byen)) Conflictivity (byen) NHA-N (byen) NO3-N (conflictivity (byen)) Pecal (conflictivity (byen)) NHA-N (byen) Pecal (conflictivity (byen)) Conflictivity (byen) NHA-N (byen) Pecal (conflictivity (byen))	Dn	Texas	0							970020	2016	12	SB Slater Fin. (229-231, 233, 255-257)
cellity Name MAW Fiscal No. License Vear Date Vear County Cut/Vity	Dry	Texas	0							970020	2016	11	SB Slater Fin. (229-231, 233, 255-257)
Price Date Conductivity Cond	Dry	Texas	0							970020	2016	10	SB Slater Fin. (229-231, 233, 255-257)
May Fiscal License Date Conductivity Co	Dry	Texas	0							970020	2016	9	SB Slater Fin. (229-231, 233, 255-257)
May Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal Fecal Conductivity NH4-N NO3-N Fecal Fecal Fecal Fecal Productivity NH4-N NO3-N Fecal Fecal Fecal Productivity NH4-N NO3-N Fecal Productivity NH4-N NO3-N Fecal Fecal Productivity NH4-N NO3-N Fecal Fecal Productivity NH4-N NO3-N Fecal Productivity NH4-N NO3-N NH4-N NO3-N Productivity NH4-N NO3-N NH4-N NH3-N NH4-N NH3-N NH4-N NH3-N NH4-N NH3-N NH4-N NH3-N NH	Dry	Texas	0							970020	2016	00	SB Slater Fin. (229-231, 233, 255-257)
Any Fiscal License Date Conductivity Co	Dry	Texas	0							970020	2016	7	SB Slater Fin. (229-231, 233, 255-257)
MAW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal Finisher (337) 2207 2016 200223 2016 200223 2016 200223 2016 200223 2016 200223 2016 200223 2016 200001 2016 200001 2016 200001 2016 200008 2016 200228 2016 200008 2016 200228	Dry	Texas	0							970020	2016	6	SB Slater Fin. (229-231, 233, 255-257)
MAN Fiscal License Date Conductivity Conductivity NIA-N NO3-N Fecal Fecal Conductivity Conductivity NIA-N NO3-N NO3-N Fecal Fecal Conductivity NIA-N NIA-N NO3-N Fecal Fecal Conductivity NIA-N NO3-N NIA-N NO3-N Fecal Fecal Conductivity NIA-N NO3-N NIA-N NO3-N Fecal County NIA-N NI	Dry	Texas	0							970020	2016	5	SB Slater Fin. (229-231, 233, 255-257)
MW Fiscal License Date Conductivity Conductivity NH4-N (ppm) Total P Coliform Country Conductivity (ppm) Total P Coliform Country Country (ppm) Total P Coliform Country Country Country (ppm) Total P Coliform Country Country Coliform Country Country Conductivity NH4-N (ppm) Total P Coliform Country Country Country Country Country Country Country Country (ppm) Total P Coliform Country Co	Dry	Texas	0							970020	2016	4	SB Slater Fin. (229-231, 233, 255-257)
MAW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal Country Conductivity NH4-N NO3-N Fecal Country Conductivity NH4-N NO3-N MO3-N Fecal Country Country Country Country Country Country Country NH4-N NO3-N MO3-N Fecal Country NH4-N NO3-N Pecal Fecal Country	Dry	Texas	0							200228	2016	902	SB Schnackenberg Sow (S36)
Incility Name MW Fiscal Number License Number Date Vear Field Number Sampled (uS/cm) Lab (uS/cm) NH4-N (uS)-N (uS/cm) NH3-N (ppm) MO3-N (ppm) Fecal County County Fecal County County Fecal (uS/cm) NH4-N (uS/cm) NH4-N (ppm) NH3-N (ppm) Mo3-N (ppm) Fecal County County Fecal County County Fecal County County County County MH4-N (uS/cm) NH4-N (ppm) NH3-N (ppm) Total P (coliform) County County Fecal County County Fecal County County County County MH4-N (uS/cm) NH4-N (ppm) NH3-N (ppm) Total P (coliform) County County <t< td=""><td>Dry</td><td>Texas</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>200228</td><td>2016</td><td>901</td><td>SB Schnackenberg Sow (S36)</td></t<>	Dry	Texas	0							200228	2016	901	SB Schnackenberg Sow (S36)
cility Name MW Fiscal No. License Peral Number Date Prinisher (337) Conductivity Conductivity (uS/cm) Conductivity (uS/cm) NH4-N (uS/cm) NO3-N (ppm) Fecal Foral Peral No3-N (ppm) Fecal Peral Peral Peral No3-N (uS/cm) Fecal Peral No3-N (uS/cm) NH4-N (uS/cm) NH4-N (uS/cm) NH4-N (ppm) NO3-N (ppm) Fecal Peral Pera	Dry	Texas	0							200228	2016	900	SB Schnackenberg Sow (S36)
Incility Name MW Inc. Fiscal Number License No. Date Vear Conductivity Number Conductivity Conductivity (uS/cm) NH4-N (ppm) NO3-N (ppm) Fecal Fecal Fecal (County Pecal Number County Pecal County Finisher (337) 2207 2016 200223 3 4 5 4 4 NO3-N (ppm) NH4-N (ppm) NO3-N (ppm) Fecal Pecal County County County County County NH4-N (uS/cm) NH4-N (ppm) NO3-N (ppm) Fecal County NH4-N (uS/cm) NH4-N (ppm) NO3-N (ppm) Fecal Pecal County Coun	Dry	Texas	0							200008	2016	238	SB Ruckert Fin. (358)
e MW Fiscal No. License Vear Date Number Field Conductivity Conductivity (uS/cm) Lab Conductivity (uS/cm) NH4-N (NO3-N) (ppm) Hecal NO3-N (ppm) Fecal Coliform County 37) 2207 2016 200223 Sampled (uS/cm) (uS/cm) (ppm) (ppm) Total P Coliform County 37) 2208 2016 200223 Sampled Sampled<	Dry	Texas	0							200008	2016	237	SB Ruckert Fin. (358)
MW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal County MW Fiscal License Date No. Year Number Sampled (uS/cm) (uS/cm) (uS/cm) (ppm) Total P Colliform County	Dry	Texas	0							200008	2016	236	SB Ruckert Fin. (358)
MW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal Fecal Fiscal No. Year Number Sampled (uS/cm) (uS/cm) (uS/cm) (ppm) Total P Coliform County	Dry	Texas	0							980001	2016	29	SB Roberts North Finisher (337)
Field Lab MW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal (uS/cm) (uS/cm) (ppm) Total P Coliform County 37) 2207 2016 200223	Dry	Texas	0							980001	2016	28	SB Roberts North Finisher (337)
MW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal No. Year Number Sampled (uS/cm) (uS/cm) (ppm) (ppm) Total P Coliform County 2208 2016 200223	Dry	Texas	0							980001	2016	27	SB Roberts North Finisher (337)
MW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal No. Year Number Sampled (uS/cm) (uS/cm) (ppm) Total P Coliform County	Dry	Texas	0							200223	2016	2208	SB Roberts I (South) Finisher (337)
MW Fiscal License Date Conductivity Conductivity NH4-N NO3-N Fecal No. Year Number Sampled (uS/cm) (uS/cm) (ppm) (ppm) Total P Coliform County	Dŋ	Texas	0							200223	2016	2207	SB Roberts I (South) Finisher (337)
		Count	Fecal Coliform	Total P	NO3-N (ppm)	NH4-N (ppm)	Lab Conductivity (uS/cm)	Field Conductivity (uS/cm)	Date Sampled	License Number	Fiscal Year	MW No.	Facility Name

Facility Name	No.	Fiscal Year	License Number	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	Sample
SB Slater Fin. (229-231, 233, 255-257)	61	2016	970020	3/22/16						0	Texas	Dry
SB Slater Fin. (229-231, 233, 255-257)	62	2016	970020							0	Texas	Dry
SB Slater Fin. (229-231, 233, 255-257)	63	2016	970020							0	Texas	Dry
SB Slater Fin. (229-231, 233, 255-257)	64	2016	970020							0	Texas	Dry
SB Slater Fin. (229-231, 233, 255-257)	65	2016	970020							0	Texas	Dry
SB Slater Fin. (229-231, 233, 255-257)	66	2016	970020							0	Texas	Dry
SB Slater Fin. (229-231, 233, 255-257)	67	2016	970020							0	Texas	Dry
SB Slater Fin. (229-231, 233, 255-257)	57A	2016	970020	3/22/16	529	533	< 0.11	5.23	0.4	0.0001	Texas	Wet
SB Slater Fin. (229-231, 233, 255-257)	58A	2016	970020	3/22/16	945	936	< 0.11	15.9	0.23	0.0001	Texas	Wet
SB Slater Fin. (229-231, 233, 255-257)	59A	2016	970020	3/22/16	609	630	< 0.11	22.3	0.56	0.0001	Texas	Wet
SB Slater Fin. (229-231, 233, 255-257)	59A00	2016	970020							0	Texas	Dry
SB Slater Fin. (229-231, 233, 255-257)	59A0- 2	2016	970020	3/22/16						0	Texas	Q
SB Slater Fin. (229-231, 233, 255-257)	60A	2016	970020	3/22/16	481	475	< 0.11	4.87	2.25	0.0001	Texas	Wet
SB Slater Fin. (229-231, 233, 255-257)	690-3	2016	970016	3/22/16						0	Texas	QA
SB Steinkogler Finisher (313)	48	2016	970021							0	Texas	Dry
SB Steinkogler Finisher (313)	49	2016	970021							0	Texas	Dry
SB Steinkogler Finisher (313)	50	2016	970021							0	Texas	Dry
SB Steinkogler Finisher (313)	51	2016	970021							0	Texas	Dry
SB Steinkogler Finisher (313)	52	2016	970021							0	Texas	Dry
SB Steinkogler Finisher (313)	53	2016	970021							0	Texas	Dry
SB Stewart & Payne Fin. (420-423)	33	2016	12623	3/28/16						0	Kingfisher	Dry
SB Stewart & Payne Fin. (420-423)	33	2016	12623	2/2/16	1085.3	1160	n.d.	9.1	n.d.	0.0001	Kingfisher	Wet
SB Stewart & Payne Fin. (420-423)	100	2016	12623	10/28/15		1280	< 0.11	16.7	0.41	0.0001	Kingfisher	QA
SB Stewart & Payne Fin. (420-423)	120	2016	12623	10/28/15		< 23	< 0.11	< 0.02	< 0.02	0	Kingfisher	Q
SB Stewart & Payne Fin. (420-423)	160	2016	12623	10/28/15		855	< 0.11	16.6	0.07	0.0001	Kingfisher	QA
SB Stewart & Payne Fin. (420-423)	170	2016	12623	10/28/15		< 23	< 0.11	< 0.02	< 0.02	0.0001	Kingfisher	QA

SB Stewart Nur 1 & 2 (150 - 151)	SB Stewart Nur 1 & 2 (150 - 151)	SB Stewart Nur 1 & 2 (150 - 151)	SB Stewart Nur 1 & 2 (150 - 151)	SB Stewart Nur 1 & 2 (150 - 151)	SB Stewart Nur 1 & 2 (150 - 151)	SB Stewart Nur 1 & 2 (150 - 151)	SB Stewart Nur 1 & 2 (150 - 151)	SB Stewart and Payne Finisher (420-423)	SB Stewart & Payne Fin. (420-423)	SB Stewart & Payne Fin. (420-423)	SB Stewart & Payne Fin. (420-423)	Facility Name													
28A0	28A	310	32	31	30	29	27	24A- 2011	23A- 2011	24	23	22	21	20	19	18	17	16	12	11	10	24A0- 2011	210	200	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
12622	12622	12622	12622	12622	12622	12622	12622	12623	12623	12623	12623	12623	12623	12623	12623	12623	12623	12623	12623	12623	12623	12623	12623	12623	License Number
	10/26/15		10/27/15	10/27/15	10/27/15	10/26/15	10/26/15	10/27/15	10/28/15	10/28/15	10/27/15	10/27/15	10/27/15	10/27/15	10/27/15	10/28/15	10/28/15	10/28/15	10/28/15	10/28/15	10/28/15	10/27/15	10/27/15		Date Sampled
	276		539	747	398		386	996	1107	10.27	10.3	1182	597	610	693	2150	1066	837	1308	1169	1258				Field Conductivity (uS/cm)
	274		551	787	418		421	1030	1130	1000	1030	1240	600	612	676	2140	1080	852	1310	1210	1230		< 23		Lab Conductivity (uS/cm)
	< 0.11		< 0.11	< 0.11	< 0.11		< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11		< 0.11		NH4-N (ppm)
	0.08		9.28	8.61	8.88		< 0.02	10.1	45.8	22.7	29.5	42.5	10.2	16.6	18.1	20	22.6	15.6	31.1	11.3	16.1		< 0.02		NO3-N (ppm)
	1.5		7.25	0.08	1.34		0.04	1.23	0.48	0.39	0.24	0.19	0.24	0.05	0.05	0.2	0.08	0.07	0.45	0.03	0.37		< 0.02		Total P
0	0.0001	0	0.0001	0.0001	0.0001	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0	0.0001	0	Fecal Coliform
Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	Kingfisher	County								
Dry	Wet	Dry	Wet	Wet	Wet	Dry	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Q	QA	Dry	Sample

Facility Name	MW No.	Fiscal Year	License	Date Sampled	Field Conductivity (uS/cm)	Lab Conductivity (uS/cm)	NH4-N (ppm)	NO3-N (ppm)	Total P	Fecal Coliform	County	
SB Wright Finishers (346-350)	22	2016	970034	3/29/16	1140	1180	< 0.11	0.8	0.17	0.0001	Texas	
SB Wright Finishers (346-350)	182	2016	970034							0	Texas	
TAYLOR, ROBERT	1	2016	200201	4/13/16	516	540	< 0.11	6.25	0.1	0.0001	Beaver	
TAYLOR, ROBERT	2	2016	200201							0	Beaver	
TAYLOR, ROBERT	ω	2016	200201							0	Beaver	-
TAYLOR, ROBERT	10	2016	200201							0	Beaver	-
Trentham Hog Farm, Inc.	1	2016	980020							0	Beaver	Dry
Trentham Hog Farm, Inc.	2	2016	980020							0	Beaver	Dry
Trentham Hog Farm, Inc.	ω	2016	980020							0	Beaver	Dry
Tumbleweed LLC, Farm 5 BGF, 6 F	22	2016	1413							0	Texas	Dry
Tumbleweed LLC, Farm 5 BGF, 6 F	23	2016	1413							0	Texas	Dry
Tumbleweed LLC, Farm 5 BGF, 6 F	24	2016	1413							0	Texas	Dry
Tumbleweed LLC, Farm 5 BGF, 6 F	25	2016	1413							0	Beaver	Dry
Tumbleweed LLC, Farm 5 BGF, 6 F	26	2016	1413	2/23/16						0	Beaver	Dry
Tumbleweed LLC, Farm 5 BGF, 6 F	27	2016	1413							0	Beaver	Dry
Tumbleweed, LLC - Farm 6 BG	19	2016	1412							0	Beaver	Dry
Tumbleweed, LLC - Farm 6 BG	20	2016	1412	2/24/15	2430	3430	< 0.11	94.6	0.27	0.0001	Beaver	Wet
Tumbleweed, LLC - Farm 6 BG	21	2016	1412							0	Beaver	Dry
Tumbleweed, LLC - Farm 6 BG	200	2016	1412	2/24/15		<23	< 0.11	< 0.02	< 0.02	0	Beaver	Q
Tumbleweed, LLC, Farm 1 BGF	1	2016	1157							0	Beaver	Dry
Tumbleweed, LLC, Farm 1 BGF	ω	2016	1157							0	Beaver	Dry
Tumbleweed, LLC, Farm 1 BGF	5	2016	1157							0	Beaver	Dry
Tumbleweed, LLC, Farm 1 BGF	35	2016	1376	2/23/16	620	643	< 0.11	7.73	0.53	0.0001	Beaver	Wet
Tumbleweed, LLC, Farm 1 BGF	39	2016	1157	2/24/15	737	763	< 0.11	7.16	< 0.02	0.0001	Beaver	Wet
Tumbleweed, LLC, Farm 1 BGF	40	2016	1157	2/24/15	794	774	< 0.11	6.44	< 0.02	0.0001	Beaver	Wet
Tumbleweed, LLC, Farm 1 BGF	41	2016	1157	2/24/15	616	624	< 0.11	4.3	< 0.02	0.0001	Beaver	Wet

	Dogwood	,						2/23/16	1410	2016	37	Tumbleweed, LLC, Farm 4 BGF, GDU 2
٦	Beaver	0							1410	2016	36	Tumbleweed, LLC, Farm 4 BGF, GDU 2
	Texas	0							1410	2016	18	Tumbleweed, LLC, Farm 4 BGF, GDU 2
	Texas	0							1410	2016	17	Tumbleweed, LLC, Farm 4 BGF, GDU 2
	Texas	0							1410	2016	15	Tumbleweed, LLC, Farm 4 BGF, GDU 2
	Texas	0							1410	2016	14	Tumbleweed, LLC, Farm 4 BGF, GDU 2
1	Beaver	0.0001	0.07	68.7	< 0.11	2480		2/23/16	1406	2016	29A0	Tumbleweed, LLC, Farm 2BGF, 3BGF, GDU1 & 3
1	Beaver	0.0001	< 0.02	< 0.02	< 0.11	<23		2/23/16	1406	2016	110	Tumbleweed, LLC, Farm 2BGF, 3BGF, GDU1&3
٦	Beaver	0						2/22/16	1406	2016	∞	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging3
٦	Beaver	0						2/22/16	1406	2016	31A	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
1	Beaver	0						2/22/16	1406	2016	30A	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
٦	Beaver	0.0001	< 0.02	62.7	< 0.11	2340	2381	2/25/15	1406	2016	29A	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
7	Beaver	0							1406	2016	34	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
7	Beaver	0							1406	2016	33	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
٦	Beaver	0							1406	2016	32	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
٦	Beaver	0							1406	2016	31	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
1	Beaver	0.0001						2/22/16	1406	2016	29	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
٦	Beaver	0							1406	2016	12	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
٦	Beaver	0.0001	0.02	11.8	< 0.11	1810	1693	2/25/15	1406	2016	11	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
1	Beaver	0							1406	2016	10	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
٦	Beaver	0							1406	2016	9	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
-	Beaver	0							1406	2016	7	Tumbleweed, LLC, Farm 2-3 BGF, GDU1, Staging
٦	Beaver	0	< 0.02	8.7	< 0.11	881		2/24/15	1157	2016	420	Tumbleweed, LLC, Farm 1 BGF
٦	Beaver	0						2/23/16	1157	2016	400	Tumbleweed, LLC, Farm 1 BGF
٦	Beaver	0						2/23/16	1157	2016	390	Tumbleweed, LLC, Farm 1 BGF
7	Beaver	0.0001	< 0.02	8.8	< 0.11	870	815	2/24/15	1157	2016	42	Tumbleweed, LLC, Farm 1 BGF
County	Соп	Fecal Coliform	Total P	NO3-N (ppm)	NH4-N (ppm)	Lab Conductivity (uS/cm)	Field Conductivity (uS/cm)	Date Sampled	License Number	Fiscal Year	MW No.	Facility Name

W-7 Swine Farm	W-6 Swine Farm, Inc.	W-6 Swine Farm, Inc.	W-6 Swine Farm, Inc.	Van Eaton Farms	TYSON - MCDANIEL MULTIPLIER	TYSON - MCDANIEL MULTIPLIER	TYSON - MCDANIEL MULTIPLIER	Tumbleweed, LLC, Farm 4 BGF, GDU 2.	Tumbleweed, LLC, Farm 4 BGF, GDU 2	Facility Name										
20	5	4	ω	2	ь	1R	w	2	6	5	4	ω	2	1	ω	2	1	38	380	MW No.
2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	Fiscal Year
1302	1302	1302	1302	1302	1302	1310	1310	1310	1368	1368	1368	1368	1368	1368	1465	1465	1465	1410	1410	License Number
11/24/15	11/24/15	11/24/15	11/24/15	11/24/15	11/24/15	11/24/15	11/24/15	11/24/15		3/30/16	3/30/16	3/30/16	3/30/16	3/30/16	12/16/15	12/16/15	12/16/15	2/25/15	2/25/15	Date Sampled
	8390	10100	157	8970	5850	19.2	2970	3090		1641	4484	3389	936	2950	1261	1489	656	711		Field Conductivity (uS/cm)
11800	8080	1000	127	11700	5310	1870	2790	2960		1800	4900	3860	964	3140	1170	1400	691	719	< 23	Lab Conductivity (uS/cm)
< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11		0.5	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	0.58	< 0.11	< 0.11	< 0.11	NH4-N (ppm)
2.3	0.31	0.13	1.21	2.6	6.81	10.3	5.09	5.07		0.03	5.57	0.14	12.6	1.43	0.04	< 0.02	13	5.99	< 0.02	NO3-N
0.04	3.27	0.14	0.48	0.04	0.04	0.43	0.14	0.3		0.06	< 0.02	0.03	0.12	< 0.02	0.39	0.5	0.33	0.05	< 0.02	Total P
0.0001	0.0001	0.0001	74	0.0001	0.0001	0.0001	0.0001	0.0001	0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	Fecal Coliform
Hughes	Hughes	Hughes	McIntosh	McIntosh	McIntosh	McIntosh	McIntosh	McIntosh	Hughes	Hughes	Hughes	Beaver	Beaver	County						
QA	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Dry	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	Wet	QA	Sample