25 Nov. 2002

DuPont Fluorotelomer Product Stewardship Update

Presented to

The United States Environmental Protection Agency

November 25, 2002

T. S. Bingman, R. C. Buck, S. H. Korzeniowski, J. C. Stadler

Presentation Outline

- Introduction
 - Agenda, desired outcomes
 - Research approach overview
 - Overall DuPont Timeline & Milestones
- Toxicology & Descriptive Biology Update
 - Intermediate : Telomer BA
 - Polymers: Telomer Urethane, Telomer Acrylate
 - Surfactants : Telomer Phosphate
 - Overall Summary & Draft Hazard Assessment
- Exposure & Risk Characterization
 - Consumer & Occupational Exposure
 - Risk Characterization
- Environmental Fate & Effects
 - Environmental Compartments
 - Environmental Effects
 - Environmental Fate
- Summary, Conclusions, Discussion & Questions

DuPont PS Effort : Product Focused

DuPont CCAS & Haskell Laboratory

Analytical

- Product & Substrate Analysis
- Toxicology, Exposure & Fate work methods development and analysis
- · Chemical "Standards"
- External Labs

Academic Collaboration

Environmental Fate & Effects

- Physical / chemical properties
- Environmental compartments
- Fate (abiotic & biotic)
- Effects : aquatic, terrestrial
- ¹⁴C Labeled Material

DuPont CCER

Communication

DuPont Chemical Solutions Enterprise

Product Stewardship Business Process

Environmental Risk Assessment

input

DuPont Haskell Laboratory

Toxicology

- Repeated Dose / One Generation Reproduction / Developmental
- Pharmacokinetics
- Dermal
- Inhalation
- ¹⁴C Labeled Material

Human Health Risk Assessment

Exposure

- Product Trails
- Mass Balance
- Human & Environmental Exposure Assessment
- Risk Characterization

DuPont CRG

DuPont Product Stewardship Key Communications 2001 - Present

2001:

Feb: DuPont meets with U.S. EPA to review Tox & EFE Plans & Results

April: DuPont presents Tox Studies at Society of Toxicology (SOT) Annual meeting

DuPont meets with Environment & Health Canada

May: DuPont meets with DEFRA, UK Env. Agency

Oct: DuPont presents initial data at Soc. Of Env. Tox & Chemistry (SETAC) Meeting

Dec: DuPont meets with U.S. EPA

2002 :

April: DuPont presents Tox Study Data at SOT Annual meeting

May: DuPont meets with UK Env. Agency; Dutch RIKZ / Univ. Amsterdam

June: DuPont meets with Environment & Health Canada

Nov.: DuPont presents at North America SETAC Meeting

DuPont meets with U.S. EPA

DuPont Fluorotelomer Product Groups: Intermediates, Surfactants, Polymers

1) Intermediates

$CF_2 = CF_2$ (TFE) $F(CF_2CF_2)_nI$ (Telomer A) F(CF₂CF₂)_nCH₂CH₂I (Telomer B) F(CF₂CF₂)_nCH₂CH₂OH (Telomer BA) Straight Chain Alkyl $F(CF_2CF_2)_nCH_2CH_2OC(O)C(R)=CH_2$ $Zonyl^{\mathbb{R}} TM (R=CH_3)$; $Zonyl^{\mathbb{R}} TAN (R=H)$

Sales Products

2) Surfactants / "Molecules"

- Anionic *Phosphate*, Carboxylate, Sulfonate
- Nonionic *Ethoxylate*
- Betaine

3) Polymers

- Acrylic
- Ester
- Amide
- Urethane
- Urea

5 **Test Compounds**

Represent Large Per Cent of Product Line

Repeated-Dose Study Plan Overview

5 <u>Test</u> <u>Compounds</u>

Structures Represent

Majority of DuPont

Product Line

Products

<u>Intermediate</u>

• Telomer BA

<u>Polymer</u>

- Telomer Urethane
- Telomer Acrylate

Surfactant

- Telomer Phosphate
- Telomer Ethoxylate

Repeated-Dose Studies

Rat Model

- 90 Day Subchronic Oral
 Study
- One-GenerationReproduction
- Developmental Toxicity

We continue to fill in our database, as we committed 1 May 2001.

DuPont Toxicology Studies Timeline*

		20	00	2001			2002				2003				
Test Material	Work	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q
Telomer	90 Day Oral Repeat Dose, 1Gen Repro														
Urethane	(Rat)														
Polymer	Developmental Study (Rat)														
	Dermal Permeation (Rat)														
	90-Day Follow-Up Study														
Telomer BA	90 Day Range-Finding Study														
Intermediate	90 Day Oral Repeat Dose + 1Gen														
	Repro (Rat)														
	Developmental Study Rangefinder														
	Genetic Toxicity: In Vitro Chrom Ab														
	Developmental Study (Rat)														
Telomer	90 Day Range Finding														
Ethoxylate	90 Day Oral Repeat Dose,1Gen Repro														
Surfactant	(Rat)														
	Developmental Study Rangefinder														
	Developmental Study (Rat)														
Telomer	90 Day Range Finding														
Phosphate	90 Day Oral Repeat Dose (Rat)														
Surfactant	1Gen Reproduction Study (Rat)														
	Developmental Range Finder														
	Developmental Study (Rat)														
	28 Day Dermal Repeat Dose (Rat)														
	14-Day Inhalation Repeat Dose (Rat)														
Telomer	90-Day Range Finding														
Acrylate	90 Day Oral Repeat Dose,1Gen Repro														
Polymer	(Rat)														
	Developmental Study Rangefinder														
	Developmental Study (Rat)														
	Work Compl	ete	V	Vor	k Ur	nder	way	,		Pro	ject	ed 1	Γimi	ng	

DuPont Toxicity Studies: Rat Model Multiple Routes of Exposure

Oral

- 90-day subchronic, reproductive, and developmental toxicity
- Dosing by gavage, male and female rats
- Full battery of tissues examined

Dermal

- In vitro tests for dermal penetration rat and human skin
- In vivo tests 28 day study, male rats

Inhalation

- 14/28 day study, male rats

Intermediate: Telomer BA Study Summary & Timeline

 $F(CF_2CF_2)_nCH_2CH_2OH$ n= 3-6

		2000		2001			
Test Material	Study	3Q	4Q	1Q	2Q	3 Q 4	ĮQ
Telomer BA	90 Day Range-Finding Study						
Intermediate	90 Day Oral Repeat Dose + 1Gen						
	Repro (Rat)						
	Developmental Study Rangefinder						
	Genetic Toxicity: In Vitro Chrom Ab						
	Developmental Study (Rat)						

Work Complete

• 90 Day Subchronic Oral : NOEL 25 mg/kg/day

Dose Levels: 25, 100, 250 mg/kg/day Primary Target: Teeth

• Reproductive Toxicity: NOEL 25 mg/kg/day

Dose Levels: 25, 100, 250 mg/kg/day not a selective reproductive toxin

Developmental Toxicity: NOEL 200 mg/kg/day

Dose Levels: 25, 200, 500 mg/kg/day not a selective developmental toxin

Polymer: Telomer Urethane Study Summary & Timeline

$$F(CF_2CF_2)_nCH_2CH_2OH \quad (Telomer\ BA) \longrightarrow \begin{array}{c} \textbf{Telomer\ Urethane\ Polymer} \\ \text{Aqueous\ Dispersion\ with\ surfactant} \end{array}$$

		20	00	2	2001			200)2		20	03	
Test Material	Work	3Q	4Q	1Q2	Q30	Q4Q	1Q	2Q:	3Q40	1 0	2Q	3Q	4Q
Telomer	90 Day Oral Repeat Dose + 1Gen												
Urethane	Repro (Rat)												
Polymer	Developmental Study (Rat)												
	Dermal Permeation (Rat)												
	Nasal Lesion - Follow-Up Study												

Work Complete Work Underway

• 90 Day Subchronic Oral:

Dose Levels: 50, 250, 1000 mg/kg/day

• Reproductive Toxicity:

Dose Levels: 50, 250, 1000 mg/kg/day

• Developmental Toxicity:

Dose Levels: 50, 250, 1000 mg/kg/day

LOEL 50mg/kg/day

Primary Target: Nose

No effects on reproduction at any dose

not a selective reproductive toxin

No abnormalities or birth defects at any dose

not a selective developmental toxin

Polymer: Telomer Urethane 90 Day Oral Study (Rat): Follow-Up

<u>Purpose</u>: to determine the cause and establish a no-effect level for nasal lesions (olfactory epithelial degeneration and necrosis)

Primary questions to address

- -Are the lesions caused by telomer urethane polymer or surfactant? Reproducible?
- -Can a NOEL be established?

Study Design

- 3 dose groups: telomer urethane polymer product, surfactant, and control
- Animals dosed with equivalent of high dose in 90 day study
- Sacrifice and evaluate nasal tissue at 2, 4 and 13 weeks as needed
- Follow with 3 dose level study with either surfactant or polymer

Study started: 11/01/02

In Vitro Dermal Permeation with Telomer Urethane

- Purpose: To determine the permeability of the agent through rat and human skin
- Draft Guideline: OECD, 1999; ECETOC, 1993
- *In vitro* technique employing glass (static) diffusion cells have been shown to predict percutaneous absorption of various chemicals *in vivo*

Static Diffusion Cell: In Vitro Dermal Permeation

Polymer: Telomer Urethane In-vitro Dermal Permeation

Methods

- 20 μl product solution was applied to rat epidermal membrane
- Total of 1234 μg fluorine in contact with rat skin for 6 hours
- 3 ml receptor fluid analyzed for total fluorine using Wickbold torch method

Results

- Total fluorine in receptor fluid was below the limit of detection (LOD) of
 0.052 ppm; less than 0.013 % of urethane polymer permeated the rat skin
- Input for exposure and risk characterization

Polymer : Telomer Acrylate Chemistry

- Aqueous emulsion polymerization of monomer composition :
 - $-F(CF_2CF_2)_nCH_2CH_2OC(O)CH=CH_2$ n = 4 6

- MW > 40,000
- Test Substance for Acute Studies : product = aqueous dispersion of polymer in water with surfactants
- Test Substance for Repeated Dose Studies:
 - solid polymer washed free of surfactants, composition before and after washing verified as the same

Polymer: Telomer Acrylate Toxicology Information

Acute Toxicity*:

• Oral Rat: ALD > 11,000 mg/kg

• Inhalation Rat: $4 \text{ hr: ALC} = 590 \text{ mg/m}^3$

• Skin Irritation: Non-irritating

• Eye Irritation: Moderate, reversible irritation

• Sensitization: Not an irritant or sensitizer in multiple

human patch tests

Aquatic Toxicity*

• Rainbow Trout : 96Hr. $LC_{50} = 181 \text{ mg/L}$

• Daphnia Magna : 48Hr. $EC_{50} = 234 \text{ mg/L}$

• Algae: 72Hr. $EC_{50} = 36.2 \text{ mg/L}$

* data generated on aqueous dispersion product

Polymer: Telomer Acrylate Subchronic Oral Study Range-Finder

- Test material: Telomer Acrylate Polymer Solids in water vehicle
- Doses:
 - 0, 1, 10, 100, 1000 mg/kg/day
 - 100% active test substance
- No clinical signs or body weight effects after 45 days at any dose
- Total fluorine levels assessed, steady-state appears to occur around 20 days into dosing
- Fluorine levels in blood are low

Polymer: Telomer Acrylate Study Summary & Timeline

			2002			2003		
Test Material	Work	10	Q2 C	3Q	4Q	1Q20	3 C)4Q
Telomer	90-Day Range Finding							
Acrylate	90 Day Oral Repeat Dose,1Gen Repro							
Polymer	(Rat)							
	Developmental Study Rangefinder							
	Developmental Study (Rat)							

Work Complete

• 90 Day Subchronic Oral: In Progress

Dose Levels: 10, 100, 1000 mg/kg/day

• Reproductive Toxicity: In Progress

Dose Levels: 10, 100, 1000 mg/kg/day

Developmental Toxicity: In Progress

Dose Levels: 10, 100, 1000 mg/kg/day

• Genetic Toxicity: Negative Ames, Chom Ab

Work Underway

Surfactant: Telomer Phosphate Chemistry

$$F(CF_2CF_2)_nCH_2CH_2OH$$
 (Telomer BA) $n = 3 - 6$
 P_2O_5 , H_2O , isopropanol, NR_3

$$[F(CF_2CF_2)_nCH_2CH_2O]_xP(O)(ONR_3H)_{3-x}$$

 $\mathbf{X} = 1 - 3$

- Products by Process
- BL, B Telomer Distributions tailored to end-use
- Mixture of Mono-, Bis- and Pyro- Phosphate Esters
- Study material contains 25 wt% isopropanol as co-solvent

Surfactant: Telomer Phosphate **Timeline**

		20	00		20	01			20	02			200	3
Test Material	Work	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q 3	Q4C
Telomer	90-Day Range Finding													
Phosphate	90 Day Oral Chronic Repeat Dose (Rat)													
Surfactant	1Gen Reproduction Study (Rat)													
	Developmental Range Finder													
	Developmental Study													
	28 Day Dermal Repeat Dose (Rat)													
	14 Day Inhalation Repeat Dose (Rat)													

Work Complete

Work Underway

• 90 Day Subchronic Oral:

Dose Levels: 10, 60, 300 mg/kg/day (35% a.i.)

Female NOEL = 60 mg/kg/day

Male: NOEL < 10 mg/kg/day

Target: liver

In Progress

In Progress

Reproductive Toxicity:

Dose Levels: 75, 500, 3500 mg/kg/day (20% a.i.)

Developmental Toxicity:

Dose Levels: 625, 1250, 2500 mg/kg/day (20% a.i.)

Genetic Toxicity: Negative Ames

Surfactant: Telomer Phosphate Toxicology Information

Acute Toxicity*

• Oral Rat: $ALD > 17,000 \text{ mg/kg}; LD_{50} > 25,000 \text{ mg/kg}$

• Inhalation Rat: $4 \text{ hr: ALC} = 57 \text{ mg/m}^3$

• Skin Irritation: Not a skin irritant

• Eye Irritation: Minimal irritant

• Sensitization: Not an irritant or sensitizer

Aquatic Toxicity*

• Rainbow Trout : 96Hr. LC₅₀ > 1,000 mg/L

• Daphnia Magna : 48Hr. EC₅₀ >1,000 mg/L

• Algae: 1Q2003

Biodegradability*: OECD 301 70%

^{*} studies conducted on 35% active test material containing isopropanol

Surfactant: Telomer Phosphate Repeated-Dose Toxicology (Rat): Summary

(35% a.i.; with isopropanol)

• 90 Day Subchronic Oral:

Dose Levels: 10, 60, 300 mg/kg/day

• Inhalation (Two Week):

Dose Levels: 0.2, 2.0, 20 mg/m3

• Dermal (28 Day) :

Dose Levels: 10, 100, 1000 mg/kg/day

(IPA containing, 35% a.i.)

Female NOEL = 60 mg/kg/day

Male: NOEL < 10 mg/kg/day

Pathology peer review in progress

Study Started 29 Oct. 2002

(20% a.i.; no isopropanol)

• Reproductive Toxicity:

Dose Levels: 75, 500, 3500 mg/kg/day

• Developmental Toxicity:

Report in Progress

Report in Progress

Dose Levels: 625, 1250, 2500 mg/kg/day

Surfactant: Telomer Phosphate* 90 Day Oral Study Results

Study Conclusion: Female (F): NOEL = 60 mg/kg/day

Male (M): NOEL < 10 mg/kg/day

300 mg/kg/day (35% active, with isopropanol)

- low body weight, food parameters (M)
- decreased red cell mass (M)
- liver: elevated enzymes, increased weights, necrosis (M&F)
- kidney: increased weights, hypertrophy (M)
- thyroid: hypertrophy (M&F)

60 mg/kg/day

- liver: elevated enzymes, increased weights, necrosis (M)
- kidney: increased weights, hypertrophy (M)
- thyroid: hypertrophy (M)

10 mg/kg/day

liver: elevated enzymes, necrosis (M)

NOTE: Minimally elevated Beta Oxidation at 60 and 300 mg/kg/day

^{*} study conducted on 35% active test material containing isopropanol

Surfactant: Telomer Phosphate Reproduction Study Results

Study Conclusion: Report in Progress

(20% a.i., no isopropanol)

Study Design

- Doses: 75, 500, 3500 mg/kg/day
- P1 Pathology
 - the same target organs identified from 90-Day Subchronic Study with isopropanol-containing test material will be evaluated
- In-life Parameters
 - observed body weight effects (M & F) only at the high dose

Study Report Complete: January 2003

Surfactant: Telomer Phosphate Developmental Study Results

Study Conclusion: Report in progress

(20% a.i., no isopropanol)

Study Design

• Doses: 625, 1250, 2500 mg/kg/day

Study Report Complete: December 2002

Surfactant: Telomer Phosphate Two-Week Inhalation Study

Study Status: Report in preparation

Concentrations: 0.2, 2, and 20 mg/m³

Exposures: 6 hrs/day x 9 days, 2-week recovery

Animals: 10 male rats/group

Additional Blood Analysis: total fluorine

- In-life: observed reduced body weight only at high dose
- Necropsy: No increased organ weights at any dose
- Microscopic findings: respiratory tract appears to be the most sensitive target

Surfactant: Telomer Phosphate 28 Day Dermal Study

Study Status: Study started 29 October 2002

- **Doses:** 10, 100, 1000 mg/kg/day
- Application: 6 hrs/day for 28 days
- Animals: 10 male rats/group
- Tissues: Skin and target tissues identified from oral study
- Additional Blood Analysis: total fluorine

Fluorotelomer Products Repeated-Dose Study Observations

- Common across all DuPont Telomer Product Studies:
 - liver and thyroid hypertrophy : physiological response
 - in the rat: males more sensitive than females
- Target endpoints are unique to each test material
- Plasma and Urine Fluoride values indicate that test materials are processed differently
 - functionality appears to drive the observed unique endpoints

Hazard Assessment Example - "Reference Dose"

• This translates the animal data to a proposed "safe" human exposure level

Risk Assessment Framework

How Did We Approach the Analysis?

- What types of products do we sell?
- Who buys our products?
- What consumer products contain our products?
- How do our customers use our products? In what form?
- How do consumers come in contact with our products?
- What is the magnitude of potential consumer exposure? How much? How often?
- How does exposure compare to what we know about potential hazard? ⇒ *Risk Characterization*

Exposure Assessment Overview

Potentially	Food	Carpets	Apparel
Exposed	Wrap		
Subpopulation	Paper		
Consumer	* Ingestion	* Dermal * Indirect Ingestion	* Dermal

Potentially	Medical	Paints	Cleaning
Exposed	Fabric		Products
Subpopulation			
Occupational			
Medical Worker	* Dermal		
Garment Worker	* Dermal		
Painter		* Dermal	
		* Inhalation	
Custodial Worker			* Dermal

CBI Information has been redacted

CBI Information has been redacted

Critical Exposure Variables

- Developed point estimates for all necessary variables:
 - (1) Concentration of telomer urethane
 - (2) Loss of polymer over time
 - (3) Exposure period
 - (4) Skin surface area
 - (5) Dermal transfer coefficient
 - (6) Body weight
 - (7) Food surface area
 - (8) Bioavailability of the telomer urethane
- Also developed probabilistic inputs for key parameters in the analysis:

CBI Information has been redacted

Exposure Assessment Summary

- We have a great deal of confidence in this assessment and the process we are using.
- We believe that this information supports our belief that our products are safe for their intended uses.
- We are working to develop information with regard to community, ecological and integrated exposure
- We are using this process to identify data needs and to focus our research efforts
- We welcome your feedback on our initial efforts and your support in helping us to move forward

DuPont Environmental Fate & Effects Work Plan

- We began with Physical-Chemical Property characterization for Telomer B and Telomer B Alcohol Intermediates
- Methods development progress now enables us to begin fate work on products
- Environmental Fate & Effects Study Plans : Product Focus
 - Physical- Chemical Properties
 - Environmental Effects :
 - Acute Data, BCF Screen, Chromic Fish ELS
 - Environmental Fate
 - Intermediate
 - Surfactants
 - Polymers

Physical - Chemical Properties: Water Solubility 6-2, 8-2 Telomer B Alcohols & Iodides

		Solubility					
	<u>12°C</u>	<u>12°C</u> <u>25°C</u> <u>37°C</u>		<u>60°C</u>			
C ₆ F ₁₃ CH ₂ CH ₂ OH	12 ppm			17 ppm			
C ₈ F ₁₇ CH ₂ CH ₂ OH	130 <u>+</u> 30 ppb	140 <u>+</u> 50 ppb	318 <u>+</u> 176 ppb	225 <u>+</u> 50 ppb			
C ₆ F ₁₃ CH ₂ CH ₂ I	9 ppb						
C ₈ F ₁₇ CH ₂ CH ₂ I				< 10 ppb (LOQ)			

- pH 3, 7, 9; T = 12, 25, 37, 60°C in deionized water
- see no differences in solubility versus pH
- Telomer Iodide water solubility very low; have decided not to pursue further testing and focus on products

Release, Fate and Effects Compartments

Potential Environmental Routes of Entry

	Intermediates	Surfactants	Polymers
Air	Particle adsorbed or vapor phase?	Fugitive emissions from WWTP?	
Soil	Air Deposition Soil - Landfill Land applied sludge	Landfill Land applied sludge	Landfill Land applied sludge
Sediment	WWTP Air Deposition direct discharge	WWTP direct discharge	Direct discharge - point source
Water	WWTP & Septic direct discharge surface presence?	WWTP & Septic direct discharge surface presence?	WWTP & Septic

DuPont: Acute Environmental Effects Data Summary

	Acute Fish mg/L	Acute Daphnid mg/L	Acute Algae mg/L
Telomer Alcohol Intermediate	96Hr LC ₅₀ = 316 fathead minnow	48Hr EC ₅₀ = 965	72Hr EC ₅₀ = 1,000
Telomer Phosphate Surfactant	96Hr LC ₅₀ > 1,000 rainbow trout	48Hr EC ₅₀ > 1,000	1Q2003
Telomer Ethoxylate Surfactant	96Hr TL ₅₀ = 100-140 rainbow trout	48Hr EC ₅₀ = 72	1Q2003
Telomer Urethane* Polymer	96Hr LC ₅₀ > 4,000 fathead minnow	48Hr EC ₅₀ = 500-5,000	72Hr EC50 = 870
Telomer Acrylate* Polymer	96Hr LC ₅₀ = 181 fathead minnow	48Hr EC50 = 234	72Hr EC50 = 36.2

^{*} tested as sales product including hydrocarbon surfactants

Aquatic Bioconcentration Screening Study

Objective: To conduct <u>screening</u> studies evaluating the bioconcentration potential fluorotelomer-based products in fish

Methods:

- Juvenile fathead minnows, flow-through design
- Test Substances (consistent F concentration)
 - Negative Control
 - Positive control : PFOS
 - Surfactants : Telomer Phosphate; Telomer Ethoxylate
 - Intermediate : Telomer Alcohol
 - Polymer : Telomer Urethane
- Stock concentrations and tissue residues analysis (total Fluorine)
 - Uptake phase days 0, 2, 5, 7, 9, 12, 14
 - Depuration phase days 16, 19, 21, 23, 26 28

Telomer Phosphate Aquatic Chronic Fish (ELS) Toxicity Test

Objective: To determine a chronic LOEC (lowest observed effect concentration) and a chronic NOEC (no observed effect concentration).

Methods:

- OECD TG 210, OPPTS 850.1400, (90-d trout ELS)
- Dose response dilution water and solvent (IPA) controls, 0.63, 1.25, 2.5,
 5, and 10 mg/L Telomer Phosphate (a complex mixture)
- Analytical confirmation of test concentrations
- Analysis by LC/MS

Start Date: 8 November 2002

Est. Completion Date (in-life): 8 February 2003

DuPont Fluorotelomer-based Products Environmental Effects Studies Timeline*

			2002		2003				
Test Materials	Work	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q
8-2& 6-2 B, BA	Physical Properties								
Multiple Compounds	Bioconcentration Factor (BCF)								
Intermediate, Surfactant and Polymer	Screen (Fathead Minnow) I								
Phosphate Surfactant	90 Day Fish ELS (GLP)								
-	72Hr Algae (GLP)								
Ethoxylate Surfactant	90 Day Fish ELS (GLP)								
	72Hr Algae (GLP)								
Acrylate Polymer	Acute Aquatic Study Set								
	Work Complete W	ork Ur	ndar	way	V	lork	Plai	nna	4

Work Complete Work Underway Work Planned

^{*} This is a proposed timeline and subject to change.

E-Fate Studies Approach

	Intermediates	Surfactants	Polymers				
Abiotic	Photolysis - Air	Hydrolytic Stability	 Hydrolytic Stability 				
	Photolysis - Water	 Adsorption-Desorption 					
	Hydrolysis	 Aging / Sequestration 					
	Adsorption-Desorption (Kd)						
	Aging / Sequestration						
Biotic	Aerobic : Ready, Inherent	 Respiration Inhibition 	 Respiration Inhibition 				
	Anaerobic	 Aerobic : Ready, Inherent 	 Aerobic : Ready, Inherent 				
			• Anaerobic ?				
	Telomer Research Program	DuPont Focus on Products					
	8-2 Telomer B Alcohol						

Telomer-Based Surfactants & Polymers Abiotic Transformation: Hydrolytic Stability

Surfactants
Phosphate, Ethoxylate

Polymers
Urethane, Acrylate

- Reactions in water are one of the most common means of non-biological degradation of substances in the environment.
- Aqueous stability tests should be performed at environmentally and biologically relevant pH's and temperatures.
 - $-pH 4, 7, 9 @ 50^{\circ}C$
 - − pH 1.2 @ 37°C
- Four replicates at 0 and 5 Days

8-2 Telomer B Alcohol Biodegradation Studies

- "Ready" Biodegradability Screening
- "Inherent" Accelerated Biodegradability Screening
- "Cold" Study material
- Qualitative Identification & Analysis
- Enable method development

CATABOL Biodegradation Prediction C₈F₁₇CH₂CH₂OH

- The sum of the % values = 100
- The model *predicts* this will be the distribution of transformation products

Accelerated Biodegradation Screening Acclimated Municipal Sludge: C₈F₁₇CH₂CH₂OH (8-2TBA)

Growth Medium:

E2-BSMYE buffer and minerals plus 20 g/L yeast extract as organic nutrient. Incubated at room temperature (21-25°C)

Inoculum source:

Municipal POTW (Incubated for 3 days)

Conclusion

• Test material is transformed with adapted sludge

Modified "Ready" Aerobic Biodegradation Screening with Non-acclimated Municipal Sludge: C₈F₁₇CH₂CH₂OH

Growth medium:

OECD 301D mineral medium + 4 mg/L yeast extract as organic nutrient

Inoculum source:

Municipal POTW, fresh sludge; non-acclimated (Incubated for 0 - 28 days)

Conclusion

- Test material decreases
- No significant fluoride concentration increase

Accelerated Aerobic/Anaerobic Biodegradation Screening Acclimated Industrial Sludge: C₈F₁₇CH₂CH₂OH

8-2 TBA + Fresh Sludge

ONTROL: 8-2 TBA, Sludge,2 mM NaCN

Growth Medium:

E2-BSMYE (1 g/L yeast extract as organic nutrient)

Inoculum source:

Industrial WWTP; acclimated (28 days)

Extraction Efficiency (%):

 115.8 ± 11.0

Conclusion

- Test material is readily transformed
- Significant fluoride formation

8-2 Telomer B Alcohol Biodegradation Screening Studies Summary

- Under modified "ready biodegradability" conditions, little defluorination occurred and C₈F₁₇CH₂COOH appears to be the primary metabolite.
- Under modified accelerated conditions, transformation is rapid
 - Primary transformation products observed are :
 - C₈F₁₇CH₂COOH
 - C₇F₁₅CF=CHCOOH
 - Mass balance <50%; Other products/losses?
- On-going studies to understand controls, incomplete recoveries, and other transformation products

AR-226

Telomer-based Surfactants & Polymers **Biodegradation Studies**

Telomer-based Surfactants & Polymers Aerobic "Ready" Biodegradation

Measured End Points:

- Time course of CO₂ evolution rate
- Time course of [F-] increase
- Total fluorine at the beginning and the end of the experiment
- Dissolved Organic Carbon (DOC) at zero (0) and 28 days
- Prework:
 - Total Organic Carbon (TOC) determination on test substance

DuPont Fluorotelomer-based Products Environmental Fate Studies Timeline*

	Work		2002			2003			
Test Materials			2Q	3Q	4Q	1Q	2Q	3Q	4Q
C ₈ F ₁₇ CH ₂ CH ₂ OH	Respiration Inhibition								
	"Ready" Biodegradation Screening								
	"Inherent" Biodegradation Screening								
Telomer	Hydrolytic Stability								
Phosphate Surfactant	Respiration Inhibition								
·	Biodegradation Screening								
Telomer	Hydrolytic Stability								
Ethoxylate Surfactant	Respiration Inhibition								
	Biodegradation Screening								
Telomer Urethane	Hydrolytic Stability								
Polymer	Respiration Inhibition								
	Biodegradation Screening								
Telomer Acrylate	Hydrolytic Stability								
Polymer	Respiration Inhibition								
	Biodegradation Screening								

^{*} This is a proposed timeline and subject to change.

Chemical Standards

- To achieve quantitative precision in transformation studies
- Isotopically Labeled Standards
 - M+5 : C₇F₁₅¹³CF₂CD₂CD₂OH (internal standard)
 - $M+2 : C_6F_{13}^{13}CF_2^{13}COOH$
- "Cold" Standards
 - C₈F₁₇CH₂COOH
 - C₇F₁₅CF=CHCOOH

DuPont Fluorotelomer-Based Products Product Stewardship Summary

- We have been proactive and diligent in meeting our commitments to better understand toxicity, environmental fate & effects and exposure.
- We are taking a comprehensive approach to understanding exposure.
- We are confident that our products are safe for their intended uses.
- We have programs in place to learn more about our products: Toxicology, Environmental Fate & Effect, Exposure
- We will continue to have an open & frequent dialogue with Regulators, Customers, and Employees

Reflections, Discussion, Questions

